Обновления ПК «Инженерные расчёты строительства скважин» за 2020 г.

Главная форма

В дереве скважин изменены иконки

Добавлено отображение глубины

«ГОЛОВЫ» ХВОСТОВИКОВ

скважины (по стволу и по вертикали)

На схеме добавлено отображение глубина

Изменён способ отображения материнских стволов у боковых стволов с «привязкой» к материнскому стволу

Добавлена возможность ввода типа ствола

Добавлена возможность редактирования «ствола» и «скважины» двойным кликом по названию в дереве

🛓 Инженерные расчёты v20.1 [C:\Work\Src\Инженерные расчё

План скважины 608 ГСЗ еские операции Буровая устано 🗌 Реальный профил № От, м До, м Длина, Операция Способ м бурения G n Q V тн об/мин л/сек м/ч -200 H 200 400 600 1 000 1 200 1 400 1 600 = 1 800 2 200 명 2 400 일 2 600 2 800 3 000 3 200 H 177,8x10,36 3 400 3 600 По вертикали 3562,6 м По стволу 4300,0 м 3678,0 м A 3 800 TC-II 114.3x6.35 Q-12 ационная 3826,0 м 4 000-4 200-Хвостовия 4300.0 м 4 400 4 600

Геодезия

Добавлен пересчёт геомагнитной модели на период с 2020 по 2025 г

Добавлены дополнительные местные системы координат

На форме «Скважина» добавлена возможность отображения устья скважины на карте (если корректно введены геодезические координаты)

кважина Х
Скважина Геодезические координаты
Параметры месторождения Система геодезических параметров (датум): СК-42 Цилиндрическая проекция: YAMAL_4 Номер 6 градусной зоны: 4 Геомагнитная модель: WMM Параметры куста Направление азимута: истинный (True) Сближение меридианов: 0,007 град
координаты куста: глооалыные С-Ю: эзеемод м Б-з: зоозоцо м Дата начала бурения куста: 01.05.2018 Магнитное склонение: 22,921 град Координаты устья скважины Расчёт координат относительно другой скважины
Элемент шаблона куста:
Олокальные Смещение 0,0022 Смещение -29,9998 на север, м 0,0022
О Глобальные Смещение 7494201,5300 Смещение на восток, м 603410,5800
Пеодезические Широта Latitude N 67,51734202 Долгота Longitude E 59,42276526 Подехности составляется с составляется с с с с с с с с с с с с с с с с с с
Магнитное склонение 2 667 🗸 🚳 Сближение мерид. 2239 📄
🖩 Расчёт координат 🛛 🛛 🏹 Тарта 🗌 🕒 Сохранить 🛛 Отмена

Загрузка данных

При загрузке данных добавлена возможность корректировки глубин обсадных колонн

Добавлена возможность ручного выбора компоновок для загрузки

Добавлена возможность формирования ГТН в Excel

Вв	од данн	ых т И	нженер	оные расчёты 🔻	Отчёты -				_	
Пл	ан сквах	кины б	08 60	8	Отч	ёты по ск	важине			
Te	хнологи	ческие	опера	ции Буровая у	/ст Гео/	ого-техн	ический	наряд		
N	2 От, м	До, м	Длина, м	Операция	Способ бурения	G TH	п об/мин	Q л/сек	V м/ч	
1	0	50	50	Бурение	Роторный	0-3	80	20-55	10	
2	2 50 400 350 Бурение				Совмещёні 3-10/10 40-60 55 1					
3	50	400	350	Проработка	Совмешён	3.5	80,90	0.55	5-25	

Расчёт тенденции КНБК

Разработан новый модуль «Расчёт тенденции КНБК»

Расчёт тенденции КНБК v20.1 [1231н (план), скв. 1231н, куст Байтекс, Байтуганское, БайТекс] × 🖩 Расчёт сил 🛙 🖶 Расчёт тенденции 🛛 Боковая сила, Н : 2192,21 🔹 Равновесная интенсивность, град/10м : 0,56 Параметры расчёта Режим сводки Расст. от долота, м Диаметр, Наружный диаметр элемента, Внутренний диаметр элемента, Интенсивность, град/10м 0,00 MM Зенитный угол, град 30,0 0 MM MM 215,9 Долото ✓ Стабилизатор 1 215,9 152,4 50,8 Нагрузка на долото, т 10,0 10,0 🔽 Стабилизатор 2 20,0 215,9 152,4 50,8 1000 Плотн. раствора, кг/м3 🗌 Стабилизатор 3 30,0 215,9 152,4 50,8 Расстояние движения, м 120 215,9 □ Стабилизатор 4 40,0 🗹 Анализ нагрузки Начальное Конечное значение, т Угол, град 152,4 50,8 Шаг, т Кривой переводник 1 5,0 1,0 5 15 2,5 Перемещения Углы изгибов Изгибающие моменты Силы реакции Анализ нагрузки 100 80 60 40 MM 20-Смещение, 0 -20 -40 -60 -80 -100-10 14 16 20 22 24 26 28 30 ó 4 6 8 12 18 Расстояние от долота, м

Расчёт тенденции КНБК v20.1 [1231н (план), скв. 1231н, куст Байтекс, Байтуганское, БайТекс]

×

🖩 Расчёт сил 📓 Расчёт тенденции 🛛 Боковая сила, Н : 2192,21 🔹 Равновесная интенсивность, град/10м : 0,56

Перемещения Углы изгибов Изгибающие моменты Силы реакции Анализ нагрузки

Модуль «Ввод данных»

Геология

Изменён способ ввода данных по давлениям

Функционал у таблицы для ввода градиентов сделан как у формы быстрого ввод данных

Добавлен ввод градиента начала поглощения

									a eenmukaau					
Стратиграф	49 (29)	Гради	енты давл	ения (32)	Нефт	ecasoso.co	носность	 A) B 	озможные оса	ожнения (15)	Эксплуатационны	ий объект		
	(L.)		and the second					., .	opinionalitie o on	(15)	sicility and provide	AN OUDERI		
danner -	Сохрани	IB OTMER	ить —	традиен	давления		[[max		Carteria		(common		рид та	0/11
гратиграфи- ческого	вертик	али, м	пласт давл	ового ения	нач	ала щения	давл.	ния азрыва	пласт	-	🗎 Гра	адиент давл	ения	
одразделения	от	до	МПа	/ 100M	МПа /	100M	МПа,	100m			— Град	, пластового	давлени	8
	(верх)	(низ)	верх	низ	верх	низ	верх	низ			— Град	, начала погл	ощения	
Q	0	170	0,981	0,981	1,500	1,500	2,260	2,260			— Град	, давления ги	дроразр	ы
K1a+al	170	310	0,981	0,981	1,500	1,500	2,260	2,260				1,5		
K1nc	310	370	0,981	0,981	1,500	1,500	2,260	2,260			0			
J3v	370	410	0,981	0,981	1,500	1,500	2,260	2,260						
J3o+km	410	530	0,981	0,981	1,500	1,500	2,260	2,260			500			
J2-J1	530	655	0,981	0,981	1,500	1,500	2,260	2,260			300			
T2-3nm2	655	830	0,981	0,981	1,500	1,500	2,260	2,260			>			
T2-3nm1	830	880	0,981	0,981	1,500	1,500	2,260	2,260			≥ 1 000			
T2an	880	1065	0,981	0,981	1,500	1,500	2,260	2,260			Ę			
T1h	1065	1125	0,981	0,981	1,500	1,500	2,260	2,260			¥ 1 500		_	
T1cb2	1125	1330	0,981	0,981	1,500	1,500	2,260	2,260			d l			
T1cb1	1330	1460	0,981	0,981	1,500	1,500	2,260	2,260			8 2 000			
P2kz+t	1460	1770	0,981	0,981	1,500	1,500	2,260	2,260			<u> </u>			
P2u	1770	2010	0,981	0,981	1,500	1,500	2,260	2,260			> =	ι 🗆		
P1k	2010	2100	0,981	0,981	1,500	1,500	2,260	2,260			≥ 2 500			
P1ar	2100	2160	0,981	0,981	1,500	1,500	2,260	2,260			-			
P1a+s	2160	2250	0,981	0,981	1,500	1,500	2,260	2,260			3 000			
C3	2250	2310	1,020	1,020	1,400	1,400	1,960	1,960						
C2m	2310	2370	1,020	1,020	1,400	1,400	1,960	1,960			3 500			
C2b	2370	2430	1,020	1,020	1,400	1,400	1,960	1,960			5 500	1		
C1s2	2430	2510	1,040	1,040	1,500	1,500	2,260	2,260						
C1s1	2510	2620	1,040	1,040	1,500	1,500	2,260	2,260				1 15	2	-
C1v3	2620	2740	1,050	1,050	1,500	1,500	2,260	2,260		~		Градиент М	(The / 100	

Единицу измерения для градиента давления можно изменить

Ввод проекти	ных данн	ых v20.3 [б	508, скв. 608, куст б,	Месторождение, Ф	илиал]		T			-
гология Проф	иль Об	садные ко	олонны Буровой р	аствор КНБК 📑 (Сохранить 🛛 🗙 От	менить Е	Единицы 🔹 Закрыть			
				Bc	е глубины ухазаны п	о вертик	Градиент давления	•	кгс/см2 / 1м	
Стратиграф	ия (29)	Градие	енты давления (32)	Нефтегазоводо	носность (4) Е	возможні	днс / снс	•	кгс/см2 / 10м	
Данные 🕶 📑 📑	Сохрани	ть Отмен	ить 🖛 Градиен	т давления 👻					МПа / 1м	
Индекс	Интер	вал по	Градиент	Градиент	Градиент	Слабый	^	6	МПа / 10м	авл
стратиграфи- ческого	верти	сали, м	пластового давления	начала поглощения	давления гидроразрыва	пласт		4	ИПа / 100м	(ub)
тодразделения	от	до	МПа / 100м	МПа / 100м	МПа / 100м				прад. пластов	ого į

Можно изменить единицу однократно, для ввода данных (при повторном запуске модуля единица измерения не сохранится) 🛓 Ввод проектных данных v20.3 (608, скв. 608, куст 6, Месторождение, Филиал

Можно выбрать один из трёх видов таблицы (для «Инженерных расчётов» и для «Проектирования бурения»)

Обсадные колонны

Добавлена возможность выбора нескольких элементов (с зажатой кнопкой Ctrl) для удаления

Добавить обсадную колонну Редактировать Удалить Загрузить подвеску хвостовика 👿 Отчёт													
Номер в порядке спуска	Тип обсадной колонны	Интервал бурения (ствол), м	Интервал бурения (верт.), м	Глубина спуска (ствол), м	Наружный диаметр колонны, мм	Диаметр долота, мм							
1	Эксплуатационная	1253	1226,5		168,3	215,9							
2	Хвостовик	2153	1625,0		114,3	142,9							

	Состав обсадной колонны (в порядке спуска)													
Состав о	бсадной колонны (в	порядке спу	/ска)											
Добавит	Добавить элемент Копировать элемент Редактировать Удайть † ↓													
Номер секции	Тип элемента	Длина, м	Тип соединения	Наружный диаметр, мм	Толщина стенки, мм	Группа прочности	Вес погонного метра, кг/м							
1	Башмак колонный	0,22			43,5		10,1							
2	Обратный клапан	0,22			14		9,2							
3	ФПЦ-У	1,1			17		45,3							
4	Обсадная труба	24,03	OTTM	114,3	7,4	Mc	19,8							
5	Пакер гидромехан	1,18			17		44							
6	Обсадная труба	36,06	ОТТМ	114,3	7,4	Mc	19,8							
7	Пакер гидромехан	1,18		133	17		44							
8	Обсадная труба	24,03	OTTM	114,3	7,4	Mc	19,8							
9	ФПУ.102	1,1			17		42							
10	Обсадная труба	24,05	OTTM	114,3	7,4	Mc	19,8							
11	Пакер гидромехан	1,18			17		44							
12	Обсадная труба	36,08	ОТТМ	114,3	7,4	Mc	19,8							
13	Пакер гидромехан	1,18		133	17		44							
14	Обсадная труба	24,05	ОТТМ	114,3	7,4	Mc	19,8							
15	ФПУ.102	1,1			17		42							

Глубину спуска колонны можно задать по «Целям бурения»

Редактирование обсадной к	олнны		
Тип обсадной колонны Наружный диаметр, мм Диаметр долота, мм Глубина интервала бурен	Эксплуатационная 177,8 v 219,1 v ия, м		
До забоя По стволу	По вертикали (абс. отметка)	\sim	
Выберите один с	Глубина, м	Коммент	арий
Глубина спуска колонны	4303 608 ЭЦН		
До конца интервала	4403 Цель 608	TVDSS 3570	
Цементирование Одноступенчатое Двухступенчатое	×		.1

Буровые растворы / ГСД

Добавлена возможность «привязки» обсадной колонны к буровому раствору В этом случае глубину можно задать «До конца обсадной колонны» и при изменении глубины колонны или при копировании данных глубина бурового раствора будет корректироваться автоматически

На ГСД добавлен вывод эпюры с эквивалентом давления начала поглощения

🛓 Ввод проектных данных v20.3 [608, скв. 608, куст 6, Месторождение, Филиал]

Геология | Профиль | Обсадные колонны | Буровой раствор | КНБК | 📑 Сохранить | 🗙 Отменить | Единицы 🛛 | Закрыть Буровые растворы График совмещённых давлений

Буровые	е растворы	График	совмещі	ённых	давлен	ий											
🗹 Выво	одить градие	нт на по	дошве г	ласта	□ ³	квив. МПа/	давл. /100м	Мин. Макс.	по шкал по шкал	е градие е гради	нтов: ентов:		•	۵ľ	ірог лас	пускать ты	Плубина по стволу
B a	æ	Давл	ение,	$ \rangle$	(аракт	ерис	тика д	цавлен	ний		Глубі	ина	спуск	<a< td=""><td></td><td>~</td><td></td></a<>		~	
≥	act	M	Па		пласт	рвого) (пор	ового)	и	ко	лонны	по	верти	кали		kr/n	
0 10	Ē	. =	ģ e		гидр	opas	зрыва	пород	ц.		(по с	CTBO.	лу), м	А		물 충 편	
ин Жа	Ŷ	ÊÆ	8₽.													D H HO	
D T D	ЧДe	De,	d Ba	JKB	ивале	нт гра	адиен	та да	влении		диа	мет	э, мм			10T NOM	
128	z		1 ದೆ ಪಿ	1		1,5		2	2,5	426	323,9	244	4,5 17	77,8 11	4,3		
0-					11,10	1			1	8				0	1	1100	
100-	Q	1.67	3.84	1.00			e0		12.24	50 -							
200 -	1/4 a v al	1,07	0,04	1,00			55		2,31							1160	
300 -	Kiatai	3,04	7,01			- 1											
400-	KIIIC	3,03	0,00		^{11,11}	6					100						
500 -	J3o+km	5,20	11,98				\sim										
600 -	J2-J1	6,42	14,80				Y										
700 -	T2-3nm2																
800 -		8,14	18,76													1110	
900 -	T2an												93				
1 000 -		10,44	24,07			- i			i i			- 0	000)				
1 100-	T1h	11,03	25,43		1,11												
1 200 -	T1cb2				1												
1 300-		13,04	30,06														
1 400 -	T1cb1	14.32	33.00												l		

КНБК

В таблице «Состав КНБК» добавлены дополнительные столбцы

обод п	Ввод проектных данных v20.3 [608, скв. 608, куст 6, Месторождение, Филиал]																							
Геология	Профиль Обсадные ко	лонны Буров	ой раствор	КНБК	🗎 Cox	кранить	X 01	менить	Едини	цы • За	крыть													
Компоно	яка																							
Добавит	ь 📄 Копировать Реда	стировать Уд	алить 🕇	↓ сф	орм. по	о колони	нам Со	форм. "Сі	пуск секь	ции" 🚺	Отчёт													
Условный номер КНБК	Словный Обсданая колонна Диам. Диам. КНК номер КНБК 2 295.3 Б1616 УСВ.493-01 (0.4) + ДР-240.NGT.5/6.62.M1 (10,7) + Обратный клалан КО-240.NGT (0.42) + КАЛИБРАТОР КС-292 СТ.П-171/171 (0.61) + ТС.ПТСК.171.03.000 (0.93) + НУБТ (18.86) + 5 Промежуточная 244.5 С																							
5	Промежуточная	244,5	295,3	БИТ 295	5,3 BT 61	16 YCB.4	93-01 (0,-	4) + ДР-2	40.NGT.5	/6.62.M1	(10,7) + O	братныі	клапан КС	-240.NGT (0,42) +	КАЛИБРАТОР КС-292 СТ.П-17	1/171 (0,6	1) + TC.ПТ	ск.171.03	3.000 (0,9	(18) + НУБТ (18				
6	Эксплуатационная	168,3	219,1	БИТ 22	0,7 BT 7	13 YCB.9	87-01 (0,	4) + Дви	гатель Д	PY2-172P	C.832 TIC	8,6) + N	реводник	ÞT-176.133 (0,92) +	Обратный клапан КОТ-133	(0,41) + K	алибрато	p KC1-20	9 СТ.П-1	33/133				
7	Эксплуатационная	168,3	219,1	БИТ 22	0,7 BT 7	13 YCB.9	87-01 (0,	4) + ДРУ	2-172PC.8	332 TIC (8	,6) + Пере	водник	¢T-176.133	0,92) + Обратныі	й клапан КОТ-133 (0,41) + Ка	пибратор	KC1-209 C	т.п-133/	133					
8	Эксплуатационная	168,3	219,1	БИТ 21	9.1 BT 7	13 YCB.9	87-01 (0,	4) + ДРУ	2-172PC.8	332 TIC (8	(,5) + Пере	водник	¢T-176.133	0,92) + Обратныі	й клапан КОТ-133 (0,41) + Ka	либратор	KC1-209 C	т.п-133/	133 (1,2)	+ TC. ПТСК. 13				
9	9 Эксплуатационная 168,3 219,1 БИТ 220,7 87 713 УСВ.987-01 (р.),4 _ДРУ2-172PC828 PC (Б.),6 + Переводник об 1-76.133 (р.29) - Обратный колана КОТ-133 (р.24) + Калибратор КС1-209 СТ.П-133/133 (1) + Т.С.ПТСК.133.03.00																							
10	10 Хвостовик 114,3 155,6 Долото Ш215,9 М3-ГВ (0,39 + Канибратор 5КС-215.9 (0,4 + Дангатель ДР-176М (5,33) + УБ1-177.8 (24) + БТ ПК 127л9																							
Добавит	ь элемент Загрузить КНБ	К 📑 Копиро	вать Редак	тироват	ь Удал	лить 1	+ +	👿 Схем	a		став компоновки је поридес слускај робавить злемент Загрузить КНБК 🎚 Копировать Редактировать Удалить 🕇 🕂 💓 Скема													
NP	Элемент кло	N		длина	5, M	218	AMPID					D		C	2	Dee		PCD.	CD.	Vacas CT				
	Ormeutine	TH		376M H	апаст	Hamiler	PHOTO	CTANKS	макс. да	4am., MM	20.000	Bec	Hanact TH	Группа	Замковое	Pea K 2360KD	њба	BSR	SR	Класс БТ				
1 БИ Т	220.7 BT 713 YCB.987-01	А	in 3	элем. н 0.4	араст. 04	наруж.	внутр.	стенка	наруж.	ам., мм внутр.	элем., кг 47.2	Вес кг/м 118.0	нараст., тн 0.05	Группа прочности	Замковое соединение	Рез к забою 0	њба к устью H-117	BSR	SR	Класс БТ				
1 БИТ 2 ДРУ	220,7 BT 713 YCB.987-01 2-172PC.832 IIC	A	in 3	элем. н 0,4 8.6	нараст. 0,4 9	наруж. 220,7 172.0	внутр.	стенка	макс. дл наруж. 178.0	внутр.	элем., кг 47,2 1300	Вес кг/м 118,0 151.2	нараст., тн 0,05 1.35	Группа прочности	Замковое соединение	Рез к забою 0 M-117	њба к устью H-117 M-133	8.59	SR 2.11	Класс БТ				
1 БИТ 2 ДРУ 3 Пер	220,7 ВТ 713 УСВ.987-01 2-172РС.832 ПС еводник ФТ-176.133	ти А	in :	элем. н 0,4 8,6 0.92	араст. 0,4 9 9.92	наруж. 220,7 172,0 176.0	внутр.	стенка	наруж. 178,0	ам., мм внутр.	элем., кг 47,2 1300 115	Вес кг/м 118,0 151,2 124,5	нараст., тн 0,05 1,35 1,46	Группа прочности	Замковое соединение	Рез к забою 0 M-117 H-133	ьба к устью H-117 M-133 M-133	8,59 2,33	SR 2,11 0.97	Класс БТ				
1 БИТ 2 ДРУ 3 Пер 4 Обр	220,7 ВТ 713 УСВ.987-01 2-172PC.832 ПС еводник ФТ-176.133 атный клапан КОТ-133	Ти А		олем. н 0,4 8,6 0,92 0,41	араст. 0,4 9 9,92 10.34	наруж. 220,7 172,0 176,0 170,0	внутр. 76,2 66.0	стенка	наруж. 178,0	нам., мм внутр.	элем., кг 47,2 1300 115 40.0	Вес кг/м 118,0 151,2 124,5 96,6	нараст., тн 0,05 1,35 1,46 1,50	Группа прочности	Замковое соединение	Рез к забою 0 М-117 H-133 H-133	к устью H-117 M-133 M-133 M-133	8,59 2,33 2.37	SR 2,11 0,97 1.10	Класс БТ				
1 БИТ 2 ДРУ 3 Пер 4 Обр 5 Кал	220,7 ВТ 713 УСВ.987-01 2-172РС.832 ПС еводник ФТ-176.133 атный клапан КОТ-133 (братор КС1-209 СТ.П-133/	ти А 133		алем. н 0,4 8,6 0,92 0,41	араст. 0,4 9 9,92 10,34 11.34	наруж. 220,7 172,0 176,0 170,0 209.0	внутр. 76,2 66,0 78.0	стенка	макс. дл наруж. 178,0	внутр.	элем., кг 47,2 1300 115 40,0 150	Вес кг/м 118,0 151,2 124,5 96,6 150,0	нараст., тн 0,05 1,35 1,46 1,50 1,65	Группа прочности	Замковое соединение	Рез к забою 0 М-117 H-133 H-133 H-133	к устью H-117 M-133 M-133 M-133 M-133	8,59 2,33 2,37 4,72	SR 2,11 0,97 1,10 0.54	Knacc BT				
1 БИТ 2 ДРУ 3 Пер 4 Обр 5 Калл 6 ТС.Г	220,7 ВТ 713 УСВ.987-01 2-172РС.832 ПС еводник ФТ-176.133 атный клапан КОТ-133 Кбратор КС1-209 СТ.П-133/ ПСК.133.03.000	а ти А 133		олем. н 0,4 8,6 0,92 0,41 1 0,93	араст. 0,4 9 9,92 10,34 11,34 12,27	наруж. 220,7 172,0 176,0 170,0 209,0 172,0	внутр. 76,2 66,0 78,0 76,0	стенка	макс. дл наруж. 178,0	внутр.	элем., кг 47,2 1300 115 40,0 150 132	Вес кг/м 118,0 151,2 124,5 96,6 150,0 141,9	нараст., тн 0,05 1,35 1,46 1,50 1,65 1,78	Группа прочности	Замковое соединение	Рез к забою 0 М-117 H-133 H-133 H-133 H-133	к устью H-117 M-133 M-133 M-133 M-133 M-133 M-133	8,59 2,33 2,37 4,72 2,53	SR 2,11 0,97 1,10 0,54 1,83	Класс БТ				
1 БИТ 2 ДРУ 3 Пер 4 Обр 5 Калі 6 ТС.Г 7 ТБТН	220,7 ВТ 713 УСВ.987-01 2-172РС.832 ПС еводник ФТ-176.133 атный клапан КОТ-133 ибратор КС1-209 СТ.П-133/ ПСК.133.03.000 4-К2-172-127-76/3-133	а ти А 133		0,4 8,6 0,92 0,41 1 0,93 18,9	араст. 0,4 9 9,92 10,34 11,34 12,27 31,17	наруж. 220,7 172,0 176,0 170,0 209,0 172,0 172,0	внутр. 76,2 66,0 78,0 76,0 76,0	стенка	макс. дл наруж. 178,0	нам., мм внутр.	элем., кг 47,2 1300 115 40,0 150 132 1890	Вес кг/м 118,0 151,2 124,5 96,6 150,0 141,9 100,0	нараст., тн 0,05 1,35 1,46 1,50 1,65 1,78 3,67	Группа прочности	Замковое соединение	Pes K 3a6000 0 M-117 H-133 H-133 H-133 H-133 H-133	к устью H-117 M-133 M-133 M-133 M-133 M-133 M-133 M-133	BSR 8,59 2,33 2,37 4,72 2,53 2,48	SR 2,11 0,97 1,10 0,54 1,83 1,00	Knacc БТ				
1 БИТ 2 ДРУ 3 Пер 4 Обр 5 Калі 6 ТС.Г 7 ТБТН 8 ТБТ1	220,7 ВТ 713 УСВ.987-01 2-172РС.832 ПС еводник ФТ-176.133 атный клапан КОТ-133 ибратор КС1-209 СТ.п-133/ ПСК.133.03.000 I+К2-172-127-76/3-133 27X9.45	а ти А 133		0,4 8,6 0,92 0,41 1 0,93 18,9 66,15	apact. 0,4 9 9,92 10,34 11,34 12,27 31,17 97,32	наруж. 220,7 172,0 176,0 176,0 209,0 172,0 172,0 127,0	внутр. 76,2 66,0 78,0 76,0 76,0 76,2	стенка	макс. дл наруж. 178,0 168,3	внутр.	элем., кг 47,2 1300 115 40,0 150 132 1890 5973	Вес кг/м 118,0 151,2 124,5 96,6 150,0 141,9 100,0 90,3	нараст., тн 0,05 1,35 1,46 1,50 1,65 1,78 3,67 9,65	Группа прочности 4145Н (45ХГМА)	Замковое соединение NC 50 for HWDP 5° 74 кг/м	Pes K 3a6000 0 M-117 H-133 H-133 H-133 H-133 H-133 H-133	к устью H-117 M-133 M-133 M-133 M-133 M-133 M-133 M-133 M-133	8,59 2,33 2,37 4,72 2,53 2,48 2,27	SR 2,11 0,97 1,10 0,54 1,83 1,00 2,75	Knacc БТ				
1 БИТ 2 ДРУ 3 Пер 4 Обр 5 Калл 6 ТС.Г 7 ТБТН 8 ТБТ1 9 ЯМЕ	220,7 ВТ 713 УСВ.987-01 2-172PC.632 ПС еводник ФТ-176.133 анный клапан КОТ-133 1братор КС1-209 СТ.П-133/ ПСК.133.03.000 LK2-172-127.76/3-133 27х9,45 - 172H-01	ТИ А 133	in <u>s</u>	элем. н 0,4 8,6 0,92 0,41 1 0,93 18,9 366,15 2,4	apact. 0,4 9 9,92 10,34 11,34 12,27 31,17 97,32 99,72	наруж. 220,7 172,0 176,0 170,0 209,0 172,0 172,0 127,0 172,0	внутр. 76,2 66,0 78,0 76,0 76,0 76,2 73,0	стенка	макс. др наруж. 178,0 168,3 178,0	внутр.	элем., кг 47,2 1300 115 40,0 150 132 1890 5973 330	Вес кг/м 118,0 151,2 124,5 96,6 150,0 141,9 100,0 90,3 137,5	нараст., тн 0,05 1,35 1,46 1,50 1,65 1,78 3,67 9,65 9,98	Группа прочности 4145Н (45ХГМА)	Замковое соединение NC 50 for HWDP 5 74 кг/м	Pes K 3a6000 0 M-117 H-133 H-133 H-133 H-133 H-133 H-133 H-133	к устью H-117 M-133 M-133 M-133 M-133 M-133 M-133 M-133 M-133 M-133	BSR 8,59 2,33 2,37 4,72 2,53 2,48 2,27 2,49	SR 2,11 0,97 1,10 0,54 1,83 1,00 2,75 0,36	Knacc БТ				
1 БИТ 2 ДРУ 3 Пер 4 Обр 5 Калл 6 ТС.Г 7 ТБТ- 8 ТБТ1 9 ЯМЕ 10 Ясг	220, 78 713 уСВ.987-01 2-172PC.832 ПС ееодник 07-176.133 атный клапан КОТ-133 166 ратор КС1-209 СТ.П-133/ ПСК.133.03.000 I-K2-172-127.76/3-133 27x9,45 i-172H-01 цараев. ЯГ6-172ВД	ти А 133		алем. н 0,4 8,6 0,92 0,41 1 0,93 18,9 2,4 2,68	apact. 0,4 9 9,92 10,34 11,34 12,27 31,17 97,32 99,72 102,4	наруж. 220,7 172,0 176,0 176,0 209,0 172,0 172,0 127,0 172,0 172,0	внутр. 76,2 66,0 78,0 76,0 76,0 76,2 73,0 76,2	стенка	макс. дл наруж. 178,0 168,3 178,0 178,0	внутр.	элем., кг 47,2 1300 115 40,0 150 132 1890 5973 330 340	Bec κr/M 118,0 151,2 124,5 96,6 150,0 141,9 100,0 90,3 137,5 126,9	нараст., тн 0,05 1,35 1,46 1,50 1,65 1,78 3,67 9,65 9,98 10,32	Группа прочности 4145Н (45ХГМА)	Замковое соединение NC 50 for HWDP 5° 74 кг/м	Pes κ 3a6 oro 0 M-117 H-133 H-133 H-133 H-133 H-133 H-133 H-133	ьба к устью H-117 M-133 M-133 M-133 M-133 M-133 M-133 M-133 M-133 M-133	BSR 8,59 2,33 2,37 4,72 2,53 2,48 2,27 2,49 2,42	SR 2,11 0,97 1,10 0,54 1,83 1,00 2,75 0,36 1,01	Knacc 6T				
1 БИТ 2 ДРУ 3 Пер 4 Обр 5 Калл 6 ТС.Г 7 ТБТН 8 ТБТ1 9 ЯМЕ 10 Ясг 11 ТБТ1	220,7 BT 713 yCB.987-01 2-172PC.832 FIC eeogarux 09T-176.133 strelik xname KOT-133 u6parop KC1-209 CT.71-133/ TCK.133.03.000 IK2-172-16/3-133 27x9,45 1-172H-01 wqDae. RT6-172BJ 27x9,45	ТИ А 133 	in 3	элем. н 0,4 8,6 0,92 0,41 1 0,93 18,9 2,4 2,68 03,95	apact. 0,4 9 9,92 10,34 11,34 12,27 31,17 97,32 99,72 102,4 206,3	Hapyx. 220,7 172,0 176,0 176,0 170,0 209,0 172,0 172,0 172,0 172,0 172,0 172,0 172,0 172,0 172,0	внутр. 76,2 66,0 78,0 76,0 76,0 76,2 73,0 76,2 76,2 76,2	стенка	макс. ди наруж. 178,0 168,3 178,0 178,0 178,0 168,3	внутр.	элем, кг 47,2 1300 115 40,0 150 132 1890 5973 330 340 9387	Bec κr/M 118,0 151,2 124,5 96,6 150,0 141,9 100,0 90,3 137,5 126,9 90,3	нараст., тн 0,05 1,35 1,46 1,50 1,65 1,78 3,67 9,65 9,98 10,32 19,70	Группа прочности 4145Н (45ХГМА) 4145Н (45ХГМА)	Замловое соединение NC 50 for HWDP 5'' 74 кг/м NC 50 for HWDP 5'' 74 кг/м	Pes κ 3a6 oro 0 M-117 H-133 H-133 H-133 H-133 H-133 H-133 H-133 H-133	ьба к устью H-117 M-133 M-133 M-133 M-133 M-133 M-133 M-133 M-133 M-133 M-133 M-133	BSR 8,59 2,33 2,37 4,72 2,53 2,48 2,27 2,49 2,42 2,28	SR 2,11 0,97 1,10 0,54 1,83 1,00 2,75 0,36 1,01 2,74	Knacc 6T				

Видимость и ширину столбцов можно настроить

Добавлен расчёт коэффициента прочности на изгиб (BSR – Bending Strength Ratio)

Расчёт делается по типам и диаметрам резьбы муфты и ниппеля

Добавлен расчёт коэффициента жёсткости (SR – Stiffness Ratio)

Расчёт делается по наружным и внутренним диаметрам соседних элементов

На форме «Схема КНБК» добавлена возможность отображения КНБК «от забоя к устью», корректировка плотности раствора для расчёта веса в растворе, добавлена возможность выбора единицы измерения для веса

	Промежуточная	244,5	295,3	БИТ 295,3 ВТ 616 УСВ.493	-01 (0,4) +	ДР-240.I	IGT.5/6.62	2.M1 (10,7	7) + O6pi	атный кл	апан КС	0-240.NG	ST (0,42) + КАЛ	ИБРАТОР	KC-292 CT.I	7-171/17	1 (0,61) + TC.F	ITCK.171.0	3.000 (0,9	3) + HY	БТ (18,	,86) + N
6	Эксплуатационная	168,3	219,1	БИТ 220,7 ВТ 713 УСВ.987	-01 (0,4) +	- Двигате	ель ДРУ2-	172PC.83	2 NC (8,6) + Пере	водник	Φ T- 176.1	33 (0,9	2) + 06	ратный к	лапан КОТ	-133 (0,4	1) + Калибрат	op KC1-20	09 CT.П-1	33/133		
7	Эксплуатационная	168,3	219,1	БИТ 220,7 BT 713 УСВ.987	-01 (0,4) +	ДРУ2-17	2PC.832 F	1C (8,6) +	Перево	дник ФТ-	176.133	(0,92) +	Обраті	ный кла	апан КОТ	133 (0,41) +	• Калибр	атор КС1-209	CT.П-133	/133			
8	Эксплуатационная	168,3	219,1	БИТ 219.1 ВТ 713 УСВ.987	'-01 (0,4) +	ДРУ2-17	2PC.832 F	1C (8,5) +	Перево	дник ФТ-	176.133	(0,92) +	Обраті	ный кла	апан КОТ	133 (0,41) +	- Калибр	оатор КС1-209	CT.II-133	/133 (1,2)	+ TC.IT	FCK.133	3.03.000
9	Эксплуатационная	168,3	219,1	БИТ 220,7 BT 713 УСВ.987	-01 (0,4) +	. <u>ЛР</u> У2-17	2PC.832 F	1C (8,6) +	Перево	дник ФТ-	176.133	(0,92) +	Обраті	ный кла	апан КОТ	133 (0,41) +	• Калибр	атор КС1-209	СТ.П-133	/133			
Соста	в компоновки (в порядке спус	ca)				ſ																	
До6	авить элемент Загрузить КНБК	🗎 Копирова	ть Редак	тировать Удалить 🕇	+ 👿	Схема	Норма ра	асхода															
	Элемент КНБ	C		Ллина м Лиа	мето мм	Ma	кс. лиам.	мм		Rec		٢n	уппа		Зам	ковое		Резьба	BSR	SR	Класс	БT	_
N₽	описание	тип	Cxe	ма КНБК																		X	
1	БИТ 220,7 ВТ 713 УСВ.987-01	A	Редакт	ировать эскиз От устья	к забою	OT 386	оя к устью	Плот	ность ра	створа	кг/м3 1	180 🔺	Bec	KE TH	KH M			анить Закра	ITh				
2	ДРУ2-172РС.832 ПС						5														000	C D	_
3	Переводник ФТ-176.133		Эскиз	Описание	длина,	нараст. длина.	тлуб. от устья, м	наруж. диам.	внутр. диам.	толщ.	макс. диам.	БНУТО.	Вес 1м.	вес элем.	нараст. вес. кг	нараст. вес в	прочн.	замковое	забою	VСТЫО	BSK	эк	<u> </u>
4	Обратный клапан КОТ-133					м		MM	MM	MM	MM	диам.,	кг/м	кг		раств., кг							
5	Калибратор КС1-209 СТ.П-133/1	33	R									MM				(1,18 г/м3)							
6	TC.ITTCK.133.03.000																						
7	T6TH-K2-172-127-76/3-133			Ы DP 5'х0.365' Р-класс 5-135	4321,65	4528	0	127,0	108,6	9,19	168,3	69,8	35,7	154348	174052	147889	S-135	19.5 S-135	H-133	M-133	2,28	1,87	
8	T6T127x9,45																						
9	ЯМБ-172Н-01		U 🖶																				
10	Яс гидрав. ЯГБ-172ВД																	NC 50 for					
11	T6T127x9,45			T6T127x9,45	103,95	206,3	4321,7	127,0	76,2		168,3		90,3	9387	19704	16742	4145H (HWDP 5" 74	H-133	M-133	2,28	2,74	
12	БТ DP 5'x0.365' Р-класс S-135	Drilling pipe			_													КГ/М					
				Яс гидрав. ЯГБ-172ВД	2,68	102,4	4425,6	172,0	76,2		178,0		126,9	340	10318	8767			H-133	M-133	2,42	1,01	
				9M6-172H-01	2.4	99.72	4428.3	172.0	73.0		178.0		137.5	330	9978	8478			H-133	M-133	2.49	0.36	
				T6T127x9,45	66,15	97,32	4430,7	127,0	76,2		168,3		90,3	5973	9648	8197	4145H (NC 50 for HWDP 5" 74 KF/M	H-133	M-133	2,27	2,75	
				ТБТН-К2-172-127-76/3-13;	3 18,9	31,17	4496,8	172,0	76,0				100,0	1890	3674	3122			H-133	M-133	2,48	1,00	

При вводе бурильных труб добавлена возможность задать внутренний диметр бурильной трубы или толщину стенки

В зависимости от типа элемента автоматически выводится комментарий «Вес элемента» или «Вес 1 м трубы»

Добавлена возможность выбора класса бурильной трубы В зависимости от класса при расчёте бурильной колонны на прочность автоматически уменьшается допустимая нагрузка по телу трубы (толщину стенки вручную менять не требуется)

Добавлена возможность добавления введённых элементов КНБК в справочник

При вводе технологических операций глубину окончания операции можно задать по «Целям бурения»

Долота Двигатели КНБК / УБТ Бурильные трубы Тип элемента БТ \sim Типоразмер DP 5"х0.365" Р-класс S-135 Тип Drilling pipe гост Длина элемента, м 🗹 до устья 127 🗸 Наружный диаметр, мм задать Внутренний диаметр, мм 9,19 Толщина стенки, мм Вес 1 м трубы, 35,715 50 DP 5" 19.5 S-135 ... Замковое соединение S-135 \sim Группа прочности H-133 Тип резьбы к забою M-133 \sim Тип резьбы к устью

БК / КНБК			×				
Дол	тота	Двигате/	и				
КНБК	/ УБТ	Бурильные т	грубы				
Тип элемента	Калибрато	р	\sim				
Типоразмер	KC1-209 CT	.П-133/133					
Тип							
гост	5						
💾 Доб	авить элем	ент в справоч	ник				
Длина элемен	та, м	1	до устья				
Наружный диа	аметр, мм	209 🗸					
Внутренний д	иаметр, мм	78					
Толщина стени	ки, мм						
Вес элемента, кг		150					
Замковое сое	динение		***				
Группа прочн	ости		\sim				
Тип резьбы к	забою	H-133	\sim				
Тип резьбы к у	/стью	M-133					

Добавлена возможность копирования КНБК

<u>ė.</u>

		Å	Ввод про	ектных	данных v20.3 [жден	ние, Фи	лиалј											
		г	еология	Профил	ь Обсадные	колонны	ы Бурс	вой р	аствор	КНБ	К	Сохран	ить 🗙	Отмени	ить Ед	иницы -	Заі		
		•	(омпонов	ka 📢	L L														
			Добавить	📑 Ko	пировать Ре,	дактиро	вать У	далит	• 🕇	t	Сформ	. по кол	оннам	Сформ	. "Спуск	секции"	W		
		:	Условный номер КНБК	O6ca	дная колонна	Д коло	иам. нны, ми	Д 1 дол	иам. ота, мм	КНБІ	К								
			4	Проме	куточная		244,	5	295,3	БИТ	295,3 B	т 616 УС	B.493-01	(0,4) + 4	цвигате.	ль ДР-240	0.NGT		
			5	Проме	куточная		244,5 295,				295,3 B	т 616 ус	B.493-01	(0,4) + 4	1P-240.N	IGT.5/6.62	2.M1 (
			6		168,	3	219,1	БИТ	220,7 E	Т 713 У	B.987-0	1 (0,4) + ,	Двигате	ель ДРУ2-	172P(
			7	Эксплуа	атационная	168,3 219,1 5				БИТ	220,7 E	Т 713 У	B.987-0	1 (0,4) + ,	ДРУ2-17	2PC.832 I	TC (8,		
			8	Эксплуа	атационная		168,3 219,1 БИТ 219.1 ВТ 713 УСВ.						B.987-0	87-01 (0,4) + ДРУ2-172РС.832 ПС					
	_																		
11	Яс гидр	оав. ЯГБ-1	72ВД				2,68	592,9	92,9 172,0		76,2		178,0		340	126,9	•		
12	T6T127>	(9,45					170,1	763	127,0	י ו	76,2		168,3		15360	90,3			
13	6T DP 5	"x0.365" 1	9 lbs/ft G-	105	Drilling pipe	2	083,05	2846,1	127,0	0 1	08,6	9,19	168,3	82,5	72907	35,0	1		
<				_															
Tex	нологиче	ские опе	рации		Y								···· ¥						
До	бавить о	перацию	📑 Коп	провать	Редактирова	ть Уда	лить	t +	Нори	ма пр	оходки	і на дол	ото						
N₽	От, м До, м Длина, Вид технологической м операции						й Способ бурения G (рот. / турб.) тн			р6.),	n, об/ми	Q, н л/се	V, м/ к	/ч Но рас	рма с. дол.				
1	2173,4	2846,1	672,7	Прораб	отка	Совмен	цённый		2-5/0		80	32-3	5 5-2	5					

Добавлена возможность копирования технологических операций

Модуль «Расчёт промывки скважины»

Добавлена «Ньютоновская» модель жидкость (для воды	Углубление скважины Параметры расчёта Обс
	Наименование Хлоркалиевый …
	Модель жидкости Ньютоновская 🗸
	Плотность, г/см3 1,02
	Пласт. вязкость, мПа-с 1
	Коэффициент 0,045 …
	СНС 10 мин, фунт/100 фу 40,0
Добавлена возможность изменения единицы измерения для ДНС и СНС	сважины ▼ Единицы ▼ Закрыть Давление ↓ Насадки долота ↓ Плотность ↓ ИДНС/СНС ↓ Па ДПС/СНС ↓ Ипоразмер БИТ 219.1 ВТ 713 УСВ.987- ✓ фунт/100 фут2 Хема пром. Периферийная ✓ Обнулить насадки
Для ДНС модели «Хершли-Балкли» сделан отдельный	Буровой раствор FANN Наименование Хлоркалиевый
Hapamerp	Модель жилкости Уершель Балка

насосов (давление начала циркуляции) Расчёт делается по значению

Добавлен расчёт давления при запуске параметра «ДНС 10 мин»

Плотность, г/см3

n, (от 0.3 до 1)

k, ∏a∙c^n

ДНС ХБ, фунт/100 фут2

СНС 10 мин, фунт/100 фу

1,02

14,57

40,0

1,002 0,018 Для ГЗД добавлена возможность расчёта / ручного ввода перепада давления «на забое» и «над забоем» Рассчитанные значения далее используются в расчётах и отчётах модуля «Расчёт БТ»

Потери дав	ления, кгс/см2
Суммарные	171,5
Наземное оборудование	2,3
Бурильная колонна	66,4
в том числе УБТ	11,2
в том числе Телесистема	10,0
Забойный двигатель (диф. перепад)	68,8 (22,1)
Долото	6,4
Кольцевое пространство	27,7
Давление за	качки, кгс/см2
Давление "над забоем"	149,4
Давление "на забое"	171,5
Давление при запуске насосов	74,8

На диаграмме «Скорость потока» добавлен вывод минимально необходимой скорости для транспорта шлама и минимально необходимой скорости для полной очистки шламовой подушки

На закладке «Очистка ствола» добавлены дополнительные параметры для «быстрого» пересчёта данных

На закладке «Результаты расчёта (таблица)» добавлена таблица с числовыми значениями эпюры «Давление при циркуляции» (давление внутри БТ и давление в КП на одной глубине)

Тараметр	ы расчёта	Обобщён	ные	е результаты	Результ	аты расчё	та (диаграммы)	Результаты р	асчета (табли	ца) Очист	ка ствола	Отклонения / Р	екомендаци	и (2)
Давление	циркуляц	ии	L	Гидравлич	еский ра	счёт								
			L	060: типо	в сектор	Внутри І	БК / КНБК	Открытый	ствол	Пред. ко	лонна			
Глуб. по стволу, м	Давл. снаружи, кгс/см2	Давл. внутри, кгс/см2	ľ	От, м	До, м	Длина, м	Наимен	ование	Потери на трение, кгс/см2	Потери в замках, кгс/см2	Потери на СПО, кгс/см2	Скорость бур. раствора, м/с	Скорость выноса шлама, м/с	Вн диал М
0	0,0	169,3		0	2238,8	2238,8	БТ ПВ 102х8		28,5	7,1		3,538		
50	5,8	173,8		2238,8	2239,2	0,4	Переводник		0			7,57		
100	11,6	178,4		2239,2	2352,6	113,4	УБТ ТБТ-101.6		5,4			6,711		
150	17,4	182,9		2352,6	2352,9	0,3	Переводник		0			7,57		
200	23,2	187,5		2352,9	2360,2	7,3	Яс гидрав. Jar-1	121	0,5			7,783		
250	28,9	192,0		2360,2	2360,6	0,3	Переводник		0			7,57		
300	34,7	196,5		2360,6	2483,1	122,5	УБТ ТБТ-101.6		5,8			6,711		
350	40,5	201,1		2483,1	2483,5	0,4	Переводник		0			7,57		

В расчёте «Очистка ствола» добавлена возможность изменения размера частиц

/бину спуска	Проверочный расчёт для заданной глубины спуска	
M 3063,0	🖩 Расчёт 📝 Отчёт Подбор расхода и насадок. Анализ ЭЦП Очистка стола 🗙 Очистить данные	
20	, Углубление скважины Параметры расчёта Обобщённые результаты	
чистка ствола		
Параметры расчё	uera	
🖩 Расчёт	г Скорость мек. бурения, м/ч: от 0 до 50 Средний размер частиц ин: 3 5 7	
and and a	Расход насосов для очистки ствола	
	🔽 — Шлам диаметром, 3 мм 🗵 — Шлам диаметром, 5 мм 🗵 — Шлам диаметром, 7 мм	
22		
22		
22		

Добавлен новый расчёт «Расчёт давления закачки при различных расходах насоса»

Расчёт давления закачки при различных расходах насоса												
Шаг расчёта, м 100 От устья Параметры раствора ВРасчёт из техн. операция	Прервать 🛛 🗙	Отчёт						0 %				
Углубление скважины Параметры расчёта Расчёт при различных расходах												
Расход 1 8 Расход 2 12 Расход 3 14 Расход 4 16			Парамет	ры раств	юра			Давление з расходе 8 л	акачки при л/с, кгс/см2	Давление з расходе 12	акачки при л/с, кгс/см2	Давление з \land расходе 14
Давление закачки	Интервал, м	модель жидкости	плотн., г/см3	пласт. вязк.,	ДНС, Па	степ. n	k, ∏a∙c^n	над забоем	на забое	над забоем	на забое	над забоем
✓ — 8 л/с ✓ — 12 л/с ✓ — 14 л/с ✓ — 16 л/с	0 - 100	Степенная	1,080	minure		0,351	1,514	35,2	47	37,1	58,8	38,6
	100 - 200	Степенная	1,080			0,351	1,514	36,6	48,4	38,7	60,4	40,6
40 60 80 100 120 140	200 - 300	Степенная	1,080			0,351	1,514	38	49,8	40,3	62,1	42,6
	300 - 400	Степенная	1,080			0,351	1,514	39,4	51,2	41,9	63,7	44,6
0-	400 - 500	Степенная	1,080			0,351	1,514	40,8	52,6	43,6	65,3	46,6
	500 - 600	Степенная	1,080			0,351	1,514	42,3	54,1	45,5	67,2	48,9
	600 - 700	Степенная	1,080			0,351	1,514	44,4	56,2	48,7	70,4	52,6
400	700 - 800	Степенная	1,080			0,351	1,514	46,6	58,4	52,1	73,8	56,5
600	800 - 900	Степенная	1,080			0,351	1,514	48,2	60	54,1	75,8	58,9
2000	900 - 1000	Степенная	1,080			0,351	1,514	49,6	61,4	55,7	77,4	60,9
	1000 - 1100	Степенная	1,080			0,351	1,514	50,9	62,8	57,3	79	62,9
∑ 1 000	1100 - 1200	Степенная	1,080			0,351	1,514	52,3	64,2	58,9	80,6	64,8
Ŝ 1 200	1200 - 1300	Степенная	1,080			0,351	1,514	53,7	65,5	60,5	82,3	66,8
	1300 - 1400	Степенная	1,080			0,351	1,514	55,1	66,9	62,1	83,9	68,8
	1400 - 1500	Степенная	1,080			0,351	1,514	56,5	68,3	63,7	85,5	70,8
§ 1 600	1500 - 1600	Степенная	1,080			0,351	1,514	57,9	69,7	65,4	87,1	72,8
	1600 - 1700	Степенная	1,080			0,351	1,514	59,3	71,1	67	88,7	74,8
	1700 - 1800	Степенная	1,080			0,351	1,514	60,7	72,5	68,6	90,3	76,8
₿ ₂₀₀₀	1800 - 1900	Степенная	1,080			0,351	1,514	62,1	73,9	70,2	91,9	78,8
	1900 - 2000	Степенная	1,080			0,351	1,514	63,5	75,3	71,8	93,5	80,8
2 200	2000 - 2100	Степенная	1,080			0,351	1,514	64,8	76,7	73,4	95,1	82,7
2 400	2100 - 2200	Степенная	1,080			0,351	1,514	66,2	78,1	75	96,7	84,7
	2200 - 2300	Степенная	1,080			0,351	1,514	67,6	79,4	76,6	98,4	86,7
2 600	2300 - 2400	Степенная	1,080			0,351	1,514	69	80,8	78,2	100	88,7
2 800	2400 - 2500	Степенная	1,080			0,351	1,514	70,4	82,2	79,8	101,6	90,7
	2500 - 2600	Степенная	1,080			0,351	1,514	71,8	83,6	81,5	103,2	92,7
3 000	2600 - 2700	Степенная	1,080			0,351	1,514	73,2	85	83,1	104,8	94,7
	2700 - 2800	Степенная	1,080			0,351	1,514	74,6	86,4	84,7	106,4	96,7
	2800 - 2866	Степенная	1,080			0,351	1,514	75,5	87,3	85,7	107,5	98
40 60 80 100 120 140	2866 - 2900	Степенная	1,080			0,351	1,514	75,9	87,7	86,2	107,9	98,6
давление, атм	< 2000 2000	·	1 000			0.001		77.4	00.0	07.0	100.5	100 2

Модуль «Расчёт бурильных колонн»

Добавлена возможность редактирования КНБК без выхода из модуля

плубину спуска	Проверо	чный расчё	т для заданно	й глубины спуска																	
L M 3826,0		-	100000000																		
ать жёсткость	Ten pack	ята Бурени	на роторнов	×	Packet			THE .		Dist i											
стость проф. 💷	Парамет	ры расчёта																			
на устые	Texmo.to		nepaueee					ассчиты	BATE KDYT	наций но	HENT NO	82									
	NE YUEV	01.11	Se is	Onensuine	Concept	and designed		lesson													
rter: isarmetaal	1	0	50 6	Chippiquin	Ротолина	Spenne .		Carrier for	TE OJUNE	i amatina a											
NAMES OF TAXABLE PARTY	2	50	400 8	Denne	Convenito	ный		Lar Table	noi orm	and / sec	anaro nr										
math. E'ST	1	50	430 0	inona6orea	Convenier	ный		manan	to damage	L Emon	in urraur	Denning The	220	1221							
BATH HOTHE H	4	400	2173.4 6	Renne	Совмещен	HMA		p)		Course	e / Dom	das .		1991							
кение трубы	5	400	2173.4	popañotea	Convenie	ный	1	locatica	(Creared /	BATEWYA	(Dom-He	0.77									
Lasty Canada e	1	400	2000 8	TENNE	Роторинай			constru	- CDO. H	/acasta			1								
and an Iona	6	2173.4	2846.1 6	Denne	Convenito	in in		Connert	annes A	100 (100)	r amiauri l	of herei									
	7	2173.4	2846.1	роработка	Совмещён	HME .		lenning	LUNG DACT	RODA DOM	CDD 6r	1.50300	6	3							
115711	8	2846.1	3826 8	рение	Convenie	HLAN .	1	lapona	LUIR DACT	popa nov	CDO CB	ID BUL	5	ā							
	9	2846.1	3826 0	роработка	Совмещён	ный		Tepenad	AREARING	8 H8 40.00	ote a 132	1 arc/cm2	42.5	0001							
	10	3826	4528 6	адение	Роторный				Evene	Har / Bay	attenne i	Han safer		and a							
								Hampinka	113 2010	TO REM P	07. 60041	HASA TC	2	0							
								Incounce	HA 2020	TO FIDIA TA	mf. fam	PHONE TC	1	0							
								Mex. cxo	DOCTA GV	OPPHILE M	N.		1	0							
								корост	a soamer	ия при 6	VDEHMA.	об/жин	8	0							
							1	Tepenas	AREACHIN		ore in 13.0	1 erc/cm2	63.6	(22)							
							1.1	Inerna a	OMPHT N	-	Annan		-	1							
							1	Moneyer	10 0000	A RECW			90	9							
										Kont	domontes	TM									
								(020-045	инент тр		садной	KOAGHHIE	0.	3							
								(030-0-0	UNENT TO-		KONTOM	CTROME	0.4	(55)							
								-	010 AR	нагрупки	Нурени	e, oracid	1.0	00							
								TONR. K	020.415	нагрузки	Ingaste	1)	1.4	00							
								TOWN. K	030.400	напризки	Incaser	ease)	11	10							
							1	TONER	manii xob	4.4. 4.4.4	acvitta e	ACHIERON	1.1	00							
								_													
	and the second second										¥							V)			
4 4 4	KHEK	Геология																			
	do6ate	The ADDRESS of	П Копиров	ать Редактировать	Xanners 4	+ +															
	- Control		140				_			Marri me			Red		France 1	December	0.	. 63	800	(0)	Verse ET
			Sold and an other	Test	hours.	Hanart	Manure.	Baryro.	CTENTA	Manual I				warnarr. To	annowed the	CO.C. STATUSTICS	rater	EVEN		-	Addre av
4	107		13 V/# 087-01	A	0.4	0.4	219.1			220.7		47.2	118.0	0.05	Care Service	co oppositioner	- 2000	H-117			
	NZ 1 64	T 219.1 BT 7	1.2.2.2.2.2.2.1.1.1.1				176.0					1300	152.9	1.35			M-117	M-133	8.40	1.93	
	NE 1 64	17 219.1 BT 7	2 ПС	RUNTORON	2.5							115	124.5	1.46			H.133	M.133	2.23	1.04	
	1 64 2 ДF	02-172PC-83	2 FIC	винтовой	8,5	9.82	176.0	0.2													
	NE 1 64 2 ДF 3 Пе	П 219.1 ВТ 7 92-172РС.83 Феводник б	2 FLC T-176.133 Can EOL 133	винтовой	8,5 0,92	9,82	176,0	66.0				40.0	96.6	1.50			H.133	ML133	2.37	1.10	
	1 64 2 ДF 3 Пе 4 ОП	П 219.1 ВТ7 92-172РС 83 реводник Ф фатный кла	2 ПС Т-176.133 пан КОТ-133	винтовой	8,5 0,92 0,41	9,82 10,24	176,0 170,0 209,0	76,2 66,0 78,0		220.0		40,0	96,6	1,50			H-133	M-133	2,37	1,10	
	NE 1 64/ 2 DF 3 De 4 Ot 5 Ka 6 TC	П 219.1 ВТ 7 92-172РС.83 реводных Ф іратный кла тибратор КО гласк. 133.03	2 ПС Т-176.133 пан КОТ-133 С1-209 СТ.П-13 000	винтовой 1/133	8,5 0,92 0,41 1,2	9,82 10,24 11,44	176,0 170,0 209,0	78,2 66,0 78,0 76,0		220,0		40,0	96,6 125,0 141.9	1,50			H-133 H-133 H-133	M-133 M-133 M-133	2,37	1,10	
	1 64/ 2 ДF 3 Пе 4 ОП 5 Ка 6 TC 7 15	П 219.1 ВТ 7 9/2-172РС.83 реводнык Ф іратный кла либратор К(ЛТСК.133.03	2 ПС Т-176-133 пан КОТ-133 С1-209 СТ.П-13 .000	Винтовой 1/133	8,5 0,92 0,41 1,2 0,93	9,82 10,24 11,44 12,37	176,0 170,0 209,0 172,0	76,0 76,0 76,0 76,0		220,0		40,0 150 132	96,6 125,0 141,9	1,50 1,65 1,78			H-133 H-133 H-133	M-133 M-133 M-133 M-133	2,37 4,72 2,53	1,10 0,54 1,83	
	NE 1 64/ 2 ДF 3 Пe 4 ОI 5 Ra 6 TC 7 TE 9 TE	П 219.1 ВТ7 Р/2-172РС 83 реводник Ф (ратный кла либратор К(ПТСК.133.03 П-К2-172-12 1372-0 45	2 ПС T-176.133 пан КОТ-133 C1-209 СТ.П-13 .000 (7-76/3-133	винтовой 1/133	8,5 0,92 0,41 1,2 0,93 18,9 64 15	0,5 9,82 10,24 11,44 12,37 31,27	176,0 170,0 209,0 172,0 172,0	76,2 66,0 78,0 76,0 76,0 76,0		220,0		40,0 150 132 1890	96,6 125,0 141,9 100,0	1,50 1,65 1,78 3,67	11354 057740	MC 50 For MMD 51 74 areas	H-133 H-133 H-133 H-133	M-133 M-133 M-133 M-133 M-133	2,37 4,72 2,53 2,48	1,10 0,54 1,83 1,00	
	NE 1 64/ 2 ДF 3 Пe 4 ОI 5 Ка 6 TC 7 TE 9 TE	П 219.1 ВТ 7 Р/2.172РС.83 реводник Ф іратный кла либратор К0 ЛТСК.133.03 ТН-К2-172-12 1127х9,45	2 ПС Т-176.133 пан КОТ-133 С1-209 СТ.П-13 .000 (7-76/3-133	винтовой 1/133	8,5 0,92 0,41 1,2 0,93 18,9 66,15	0,5 9,82 10,24 11,44 12,57 31,27 97,42	176,0 170,0 209,0 172,0 172,0 127,0	76,2 66,0 78,0 76,0 76,0 76,2		220,0		40,0 150 132 1990 5973	96,6 125,0 141,9 100,0 90,3	1,50 1,65 1,78 3,67 9,65	4145H (45XFMA)	NC 50 for HWOP 5' 74 xr/m	H-133 H-133 H-133 H-133 H-133	M-133 M-133 M-133 M-133 M-133	2,37 4,72 2,53 2,48 2,27	1,10 0,54 1,83 1,00 2,75	
	NE 1 64/ 2 AF 3 Re 4 OI 5 Ka 6 TC 7 TE 9 T6 10 Re	П 219.1 ВТ 7 РУ2-172РС 83 реводник Ф іратный кла либратор X0 ЛПСК.133.03 ПН-К2-172-12 1127х9,45 В-172Н-01	2 ПС Т-176.133 пан КОТ-133 С1-209 СТ.П-13 .000 С7-76/3-133	винтовой 1/133	8,5 0,92 0,41 1,2 0,93 18,9 66,15 2,4	6,5 9,82 10,24 11,44 12,37 31,27 97,42 99,82	176,0 170,0 209,0 172,0 172,0 127,0 172,0	76,2 66,0 76,0 76,0 76,2 75,2 73,0		220,0 168,3 178,0		40,0 150 132 1890 5973 330	96,6 125,0 141,9 100,0 90,3 137,5	1,50 1,65 1,78 3,67 9,65 9,96	4145H (45XFMA)	NC 50 For HWDP 5' 74 xr/m	H-133 H-133 H-133 H-133 H-133 H-133	M-133 M-133 M-133 M-133 M-133 M-133	2,37 4,72 2,53 2,48 2,27 2,49	1,10 0,54 1,83 1,00 2,75 0,36	

Добавлены дополнительные параметры расчёта

- Грузоподъёмность БУ
- нагрузка на долото для турбинного бурения
- галочка «Циркуляция раствора при СПО без вращения»
- галочка «Циркуляция раствора при СПО с вращением»
- Перепад давления на долоте и ГЗД при СПО

Перепад давления на долоте и ГЗД можно загружать из модуля «Расчёт промывки скважины»

Плотность бурового раствора, г/см3	1,18
Длина бурильной трубы между замками, м	9
Вес талевой системы / верхнего привода, тн	15
Грузоподъёмность буровой установки, тн	320 🗸
Спуск / Подъём	
Посадка (Спуск) / Затяжка (Подъём), тс	0
Скорость СПО, м/мин	18
Скорость вращ. (для СПО с вращ.), об/мин	3
Циркуляция раствора при СПО без вращ.	\checkmark
Циркуляция раствора при СПО с вращ.	\checkmark
Перепад давления на долоте и ГЗД, кгс/см2	42,8
Бурение / Вращение над забое	N
Нагрузка на долото при рот. бурении, тс	20
Нагрузка на долото при турб. бурении, тс	10
Mex. скорость бурения, м/ч	10
Скорость вращения при бурении, об/мин	80
Перепад давления на долоте и ГЗД, кгс/см2	63,6 …
Ввести момент на долоте вручную	
Момент на долоте, кгс-м	909
Коэффициенты	
Коэффициент трения в обсадной колонне	0,3
Коэффициент трения в открытом стволе	0,4 …
Уточн. коэф. для нагрузки (бурение, спуск)	1,00
Уточн. коэф. для нагрузки (подъём)	1,00
Уточн. коэф. для нагрузки (вращение)	1,00
Уточняющий коэфф. для расчёта момента	1,00

Добавлены эпюры «Напряжение баклинга», «Усталостное напряжение», «Предел выносливости»

Добавлена возможность изменения единицы измерения напряжения

Добавлена эпюра «Коэффициент усталости»

Для отчётов в расчётной задаче «Расчёт для интервала глубин» добавлены дополнительные настройки

Добавлена возможность автоматического определения заголовка для веса (вес / вес на крюке) в зависимости от значения параметра «Вес талевой системы»

Добавлен расчёт усталости и износа бурильной колонны

Модуль «Расчёт цементирования»

Добавлена возможность загрузки цементирования с другой скважины

Загружать можно данные по одной или сразу по всем колоннам

На форме «Расчёт плана закачки» добавлена возможность использования одного агрегата для закачки буферных жидкостей

Добавлена автоматический расчёт объёма и скорости закачки порции «СТОП» в зависимости от диаметра колонны Расчёт цементирования обсадных труб v18.01 [608, скв. 608, куст 6, Месторождение, Филиал]
 Загрузить цементирования
 Подбор растворов
 Расчёт закачки
 Расчёт СПО
 Расчёт промывки 1
 Эксплуат ционая - I ст.
 Цемстаха с См
 Коэффицент
 Созффицент
 1.03
 Потери давления
 10
 Обсадная колонна
 Глубина спуска (ствол,

На форме «Расчёт промывки» добавлена возможность учёта оснастки, расчёт промежуточных промывок, расчёт «Давления начала циркуляции», вывод табличных данных по давлению при циркуляции

Модуль «Проектирование конструкции»

Добавлена возможность автоматического проектирования профиля, загрузки конструкции, перерасчёта данных и формирования Макета

В модуле перерасчёта проектных данных добавлена возможность выбора дополнительных опций для расчёта

Расчёты для обса	адных ко	лонн					Расчёты для бу	рилі	ьных кол	онн			
Обсадная колонна	Диам., мм	Подбор секций	Тип соединения	Трубы в нали- чии	Проверка на проч- ность	Расчёт цементи- рования	Обсадная колонна	N₽	От, м	До, м	Операция	Расчёт промывки	Проверк на проч- ность
laправление	426		~				Направление	1			Бурение	\checkmark	
ондуктор	323,9		~				Кондуктор	2			Бурение		
Іромежуточная	244,5		~				Кондуктор	3			Проработка		
ксплуатационная	177,8		~				Промежуточная	4			Бурение		
востовик	114,3		~				Промежуточная	5			Проработка		
							Промежуточная	5		2000	Бурение		
							Эксплуатационн	6		2846,1	Бурение		
							Эксплуатационн	7		2846,1	Проработка		
							Brennyatau woww	8	2846.1		Бурение		M
							эксплуатационн	~					
							Эксплуатационн	9	2846,1		Проработка		
Дополнительн ПРасчёт потребн ПАнализ сближе	ње расч ности бу :ний	ёты рового р	аствора и отхо	дов буре	ния		Эксплуатационн Эксплуатационн Хвостовик	9	2846,1		Проработка Бурение		
Дополнительн Расчёт потребн Анализ сближе Нормативная к	ые расч ности бу ний сарта	ёты рового р	аствора и отхо	дов буре	ния		Эксплуатационн Эксплуатационн Хвостовик	9	2846,1		Проработка Бурение		
Дополнительн Расчёт потребн Анализ сближе Нормативная к Результаты р	ные расч ности бу ний карта расчёто!	ёты рового р	аствора и отхо	дов буре	ния		Эксплуатационн Эксплуатационн Хвостовик	9	2846,1		Проработка Бурение		
Дополнительн Расчёт потребн Анализ сближе Нормативная к Результаты р	ые расч ности бу ний сарта расчётон	ёты posoro p s	аствора и отхо	дов буре	ния		Эксплуатационн Эксплуатационн Хвостовик	9	2846,1		Проработка Бурение		
Дополнительн Расчёт потребн Анализ сближе Нормативная к Результаты р	ные расч ности бу ний сарта расчётон	ёты poвoro p s	аствора и отхо	дов буре	ния		Эксплузационн Эксплузационн Хвостовик	9 10	2846,1		Проработка Бурение		
Дополнительн Расчёт потребн Анализ сближе Нормативная к Результаты р	ње расч ности бу ний карта расчётоі	ёты рового р в	аствора и отхо	дов буре	ния		Эксплуатационн Эксплуатационн Хвостовик	9 10	2846,1		Проработка Бурение		
Дополнительн Расчёт потребн Анализ сближе Нормативная к Результаты р	ые расч ности бу ений сарта расчёто	ёты posoro p s	аствора и отхо	дов буре	ния		Эксплузиционн Эксплузиционн Хвостовик	9 10	2846,1		Проработка Бурение		
Дополнительн Расчёт потребг Анализ сближе Нормативная к Результаты р	ные расч ности бу ений сарта расчёто	ёты poboro p s	аствора и отхо	дов буре	ния		Эксплуатационн Хвостовик	9 10	2846,1		Проработка Бурение		