Проектирование профиля / Анализ пересечений (V17.08 – V17.12)

Шаблон Куста (V17.08– V17.12)

1. В тангенциальный метод добавлен следующий расчёт:

• Прямая-Дуга (задаётся интенсивность)-Прямая (задаётся зенит). Аналог «Align Inc».

N	? Глуб п ствол	іина о у лу, м	Длина участка, м	Зенитный угол, град	Азимут, град	Вертикальная глубина, м	Вертикальная глубина (море), м	Лок. смещение к северу, м	Лок. смещение к востоку, м	Отклонение от устья, м	Азимут смещения, град	Пространств. интенсив., град/10 м	Угол установки отклон., град	Интенсив. по зениту, град/10 м	Интенсив. по азимуту, град/10 м	Индекс сложности бурения	Тип участка	Комментар
	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.00	TIE LINE	
	2 50	00.00	500.00	0.00	0.00	500.00	500.00	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.00	INC_AZI_MD	
	3 100	00.00	500.00	25.00	0.00	984.28	984.28	107.36	0.00	107.36	0.00	0.500	0.00	0.500	0.000	3.95	INC_AZI_MD	
	4 146	51.76	461.76	25.00	0.00	1402.78	1402.78	302.51	0.00	302.51	0.00	0.000	0.00	0.000	0.000	4.41	SLANT	
	5 165	5.47	193.71	35.00	81.08	1576.57	1576.57	354.04	57.08	358.61	9.16	2.000	115.11	0.516	4.186	4.93	SLANT	
	6 217	2.39	516.92	35.00	81.08	2000.00	2000.00	400.00	350.00	531.51	41.19	0.000	0.00	0.000	0.000	5.19	SLANT	
	7																INSERT LINE	
Пс J-i	сле до трофил	бавлен ль S	ния, вста - профи	вки, удале пь Простр	ния мето ранствен	да проектирова ная кривая Пл	ния или редакті оская дуга на то	ировании па чку Плоск	араметров ме ая дуга на на	тода проектиј правление У	рования вып часток стаби	олните "Расчёт лизации Дуга	-Прямая-Дуга				Pa	счёт (F2)
	Зафико	ируйт	ге любые	два парам	етра			Ко	ординаты цел	и:						Тангенциал	ьный метод	
1	Ілина 1	1-участ	тка стаби	лизации, і	M:	461.76	выход на	цель Глу	/бина по верт	гикали, м:	2000.00				C) дуга (интен	сивность)-пря	мая
	Тростр град/10	анстве)м:	енная ин	тенсивнос	ть,	2.000		От	клонение, м:		456	.22 Смещен	ие на север, м	4	00.00 C) прямая-ду	га (интенсивно	сть)
3	Зенитный угол в конце профиля, град 35.00 🗹							Aзı	имут отклоне	ния, град:	81	.08 Смещен	ие на восток, і	м: 3	50.00) дуга (до ве	ртикали)-пряма	я
Длина 2-участка стабилизации, м: 516.92 🗹 Имя цели: Глубина по вертикали - 2000 💟 🕡									Гл O	убина по ве) прямая-ду	ртикали, м: 1 га (интен.)-прям	576.57 📺 иая (зенит)						

2. В анализ пересечений добавлен прибор «МWD+AX Rev4», описанный по модели ISCWSA.

🔳 Э	лли	пс неопредел	енности									$ \Box$ \times
Тип м () W () IS	Wollf/dWardt Poor magnetizati				бки (sigma) метры уумента рхность іса	3	Мой инструмент Wollf/d\ Ошибка в опред. глубин Несоосность прибора, гј Ошибка в опред. зенита,	Wardt ы, м/1000м: рад: град:	10,52 0,00 5,00	Ошибка в опред, истин. азимута, град; Ошибка в опред. магнит. азимута, град; Ошибка в опред. азимута гироскопа, град;	20,00 0,00 0,00	 Расчёт Отчёт Интерполяция
	Tools ISCWSA MWD+AX Rev4											
мр	Property ID Mt Code Magnitude Unite Depth Incl									Formula		
WID	N≏	Code	Magnitude	Units	Depth	Inclina	tion	Azimuth				
1289,	1	DRFR	0,35	m	1	0		0				
2089,	2	DSFS	0,00056	-	MD	0		0				
2932,	3	DSTG	2,5E-7	1/m	MD * TVD	0		0				
	4	ABIXY-TI1S	0,004	m/s2	0	-Cos(li	nc) / Gfield	(Cos(Inc) * Cos(I	nc) * Si	n(AzM) * (Tan(Dip) * Cos(Inc) + Sin(Inc) * Cos(Az	M))) / (GField	I * (1 - Sin(Inc) * Sin(Inc)
	5	ABIXY-TI2S	0,004	m/s2	0	0		-(Tan(Dip) * Cos	(AzM) -	Tan(90 * RAD - Inc)) / (GField * (1 - Sin(Inc) * Sin	(Inc) * Sin(Az	zM) * Sin(AzM)))
	6	ABIZ	0,004	m/s2	0	-Sin(In	c) / Gfield	(Sin(Inc) * Cos(In	nc) * Sii	n(AzM) * (Tan(Dip) * Cos(Inc) + Sin(Inc) * Cos(AzI	vl))) / (1 - Sin((Inc) * Sin(Inc) * Sin(AzM)
	7	ASIXY-TI1S	0,0005	-	0	Sin(In	c) * Cos(Inc) / Sqr(2)	-(Sin(Inc) * Cos(I	lnc) * C	os(Inc) * Sin(AzM) * (Tan(Dip) * Cos(Inc) + Sin(In	c) * Cos(AzM)))) / (Sqr(2) * (1 - Sin(Inc)
	8	ASIXY-TI2S	0,0005	-	0	Sin(In	c) * Cos(Inc) / 2	-(Sin(Inc) * Cos(I	lnc) * C	os(Inc) * Sin(AzM) * (Tan(Dip) * Cos(Inc) + Sin(In	c) * Cos(AzM)))) / (2 * (1 - Sin(Inc) * Sin
	9	ASIXY-TI3S	0,0005	-	0	0		(Tan(Dip) * Sin(li	nc) * C	os(AzM) - Cos(Inc)) / (2 * (1 - Sin(Inc) * Sin(Inc) * S	Sin(AzM) * Si	n(AzM)))
	10	ASIZ	0,0005	-	0	-Sin(In	c) * Cos(Inc)	Sin(Inc) * Cos(In	ic) * Co	s(Inc) * Sin(AzM) * (Tan(Dip) * Cos(Inc) + Sin(Inc)	* Cos(AzM))	/ (1 - Sin(Inc) * Sin(Inc) *
	11	MBIXY-TI1S	70	nT	0	0		-Cos(Inc) * Sin(A	zM) / (BField * Cos(Dip) * (1 - Sin(Inc) * Sin(Inc) * Sin(Az	M) * Sin(Azt	4)))
	12	MBIXY-TI2S	70	nT	0	0		Cos(AzM) / (BFie	eld * Co	os(Dip) * (1 - Sin(Inc) * Sin(Inc) * Sin(AzM) * Sin(A	zM)))	
	13	MSIXY-TI1S	0,0016	-	0	0		Sin(Inc) * Sin(Az	:M) * (Ta	an(Dip) * Cos(Inc) + Sin(Inc) * Cos(AzM)) / (Sqr(2)	* (1 - Sin(Inc	c) * Sin(Inc) * Sin(AzM) * :
Coupri	14	MSIXY-TI2S	0,0016	-	0	0		Sin(AzM) * (Tan(Dip) * !	Sin(Inc) * Cos(Inc) - Cos(Inc) * Cos(Inc) * Cos(AzN	i) - Cos(AzM)) / (2 * (1 - Sin(Inc) * Sin(
Covan	15	MSIXY-TI3S	0,0016	-	0	0		(Cos(Inc) * Cos(A	AzM) *	Cos(AzM) - Cos(Inc) * Sin(AzM) * Sin(AzM) - Tan(I	Dip) * Sin(Inc	:) * Cos(AzM)) / (2 * (1 - S
	15 MSIXY-TI3S 0,0016 - 0 0 16 DECG 0,36 deg 0 0				1							

Одновременное нажатие «Ctrl+Alt+A» добавляет 12 приборов в справочник «Инструмент (инклинометрия)», включая 3 прибора для скважин, буримых с плавучих платформ

3. При проектировании профиля с помощью метода «Ј-профиль» появилась возможность расчета профиля при зените больше 90 градусов.

Зафиксируйте любые два параметра	Зафиксируйте любые два параметра
Длина 1-участка стабилизации, м: 1260,00	Длина 1-участка стабилизации, м: 1262,21 🔽
Интенсивность по зениту, град/10м: 1,000	Интенсивность по зениту, град/10м: 1,000
Зенитный угол в конце профиля, град: 94,67 🗸	Зенитный угол в конце профиля, град; 95,00 🗌
Длина 2-участка стабилизации, м: 381,69 🗸	Длина 2-участка стабилизации, м: 378,55 🗹
Зафиксируйте любые два параметра	Зафиксируйте любые два параметра
Длина 1-участка стабилизации, м: 1260,00 🗌	Длина 1-участка стабилизации, м: 1283,67 🗹
Интенсивность по зениту, град/10м: 0,996 🗹	Интенсивность по зениту, град/10м: 1,036 🗹
Зенитный угол в конце профиля, град; 95,00	Зенитный угол в конце профиля, град: 95,00 🗌
Длина 2-участка стабилизации, м: 376,33 🗹	Длина 2-участка стабилизации, м: 400,00

4. В анализ пересечений добавлен прибор «PoorMag Standart», описанный по модели ISCWSA.

(параметры взяты от прибора «Poor Mag» - W&dW)

Тиг	т мод	ели - инст	румент			Ошибки	1 (sigma)		Мой инстр	умент Wollf	/dWardt		
0 0	Wollf,	/dWardt 5A PoorM	Poor mag	netizat A Sta 🖣	ti ~	Параме инструм Поверха эллипса	тры іента ность 2.7	1 '955 🗐	Ошибка в Несооснос Ошибка в	опред. глуб ть прибора опред. зени	ины, м/1000м: , град: іта, град:	10 0 5	
lĺh	Ì	Исходные	е данные			Данные	расчета						
М	ID	INC	AZI	TVD	P	Highside	Lateral	Vertical	SemiMajor	SemiMajor -v1	SemiMinor	Min. A	
30	00.00	0.00	0.00	300	0.00	2.20	2.20	0.84	2.20	2.20	2.20		
36	53.94	45.00	266.26	357	.57	2.20	3.28	1.18 3.28 3.28		3 2.69			
381	8.04	45.00	266.26	2799	.98	66.29	211.29	47.22	211.29	211.29	48.07		
Too	ols ISC	WSA Poo	orMag ISC	WSA S	stand	lard							
		F	roperty										
N≗	1	Code	Magnitude	U	Inits	Depth	h	nclination		A	zimuth		
1	DEP (W&dW)		1 m	۱	1	C			C			
2	MIS		(0.15 d	eg	1	0			0			
3	3 AZR 0.75 deg			eg	0	C			1				
4	4 SAG 0.5 de					0	S	in(lnc)		0			
5 AMID 2.5 deg						0 0				Sin(Inc) * Sin(AzM)			

5. В анализ пересечений добавлен прибор «PoorMag Edit», описанный по модели ISCWSA.

(параметры взяты от прибора «Poor Mag» - W&dew, значения параметров № 2-5 увеличены вдвое)

	Эллипс н	еопре	еделенно	сти									
Тип	модели -	инстр	румент			—Ошибкі Параме	и (sigma) тры	1	—Мой инстр Ошибка в	умент Wollf/ опред. глуби	dWardt іны, м/1000м:	10.52	Ошиб
¥ ()	SCWSA v	oorMa	g ISCWSA	Edit	• •••	инструм Поверхи эллипса	иента ность 2.7	7955	Несоосно Ошибка в	сть прибора, опред. зенит	град: га, град:	0.00	Ошиб Ошиб
	Исхо	одные	данные		Т	Данные	расчета						
M	N IN	IC	AZI	TVE	н	lighside	Lateral	Vertical	SemiMajor	SemiMajor -v1	SemiMinor	Min. Azim	ut Po
300	0.00	0.00	0.00	300	.00	4.39	4.39	0.84	4.39	4.39	4.39	90.	00
363	.94 4	15.00	266.26	357	.57	4.25	6.57	1.61	6.57	6.57	5.37	86.	26
3818	3.04 4	15.00	266.26	2799	.98	132.58	422.57	93.47	422.57	422.57	95.39	86.	26
Тос	ols ISCW	SA Po	orMag ISC	CWSA	Edit								
٨²	Cod	le l	Property Magnitud	e	Units	Depth	ı	Inclination		4	Azimuth	Fo	rmula
1	DEP (W8	kdW)		1	m	1		0		C)		
2	MIS			0.3	deg	0		0		C)		
3	3 AZR 1.5 deg			deg	0		0		1				
4	SAG			1	deg	0		Sin(Inc)		C)		
5	AMID			5	deg	0		0		2	in(Inc) * Sin(A	zM)	

Одновременное нажатие «Ctrl+Alt+A» добавляет 14 приборов в справочник «Инструмент (инклинометрия)», включая 3 прибора для скважин, буримых с плавучих платформ

6. В проектировании профиля добавился новый отчет.

Отчёт	×
Инклинометрия	
☐ Интерполяция по стволу профиля Шаг Вывод интервала профиля от, м	интерполяции, м 10 Узамеры Одо, м 2371,75 По стволу По вертикали
Добавить в общий отчет Обсадные колонны Геология Комментарии к замерам Истинный азимут	Дополнительные таблицы Обсадные колонны Геология Комментарии к замерам
Координаты (зафиксируйте любые два па Локальные координаты X Y Полярные координаты (от устья)	раметра) Глобальные координаты X Y Геодезические координаты
Магн. поправки - "град" Добави	ть разницу верт. глубин
Round and Andrew a Andrew and Andrew and And	🕑 пипус под уровнем моря

При нажатии кнопки «Zak» формируются отчет в Excel и два файла las (разделитель дробной части всегда «точка»)

Бурсофтпроект 2018

													DEPT	Глубина
													UGOL	Зенит
													AI	Азимут истинный
													AM	Азимут магнитный
													UDL	MD-TVDSS-стол ротора
													SM	Отход от устья
													ASI	Азимут отхода
													ХК	Локальное смещение на востоя
													YK	Локальное смещение на север
													ZK	TVDSS
													INT	Интенсивность искривления
													OXK	значения О
													OYK	значения О
													OZK	значения О
UGOL	AI	AM	UDL	SM	ASI	ХК	YK	ZK	INT	OXK	ΟΥΚ	OZK		
xx.xx	xxxx.xx	xxxx.xx	xxxx.xx	xxxx.xx	xxxx.xx	xxxxx.xx	xxxxx.xx	xxxxx.xx	xxxx.xx	xx.xx	xx.xx	xx.xx		
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-50.82	0.00	0.00	0.00	0.00		
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	179.18	0.00	0.00	0.00	0.00		
14.76	267.25	250.43	1.63	18.91	267.25	-18.88	-0.91	325.15	1.00	0.00	0.00	0.00		
	UGOL XX.XX 0.00 0.000 14.76	UGOL AI XX.XX XXXXX 0.00 0.00 0.00 0.00 14.76 267.25	UGOL AI AM XX.XX XXXXX XXXXXX 0.00 0.00 0.00 0.00 0.00 0.00 0.00 14.76 267.22 250.43	UGOL AI AM UDL XX.XX XXX.XX XXXX.XX XXX.XX 0.00 0.00 0	UGOL AI AM UDL SM XX.XX XXXXXX XXXX.XX XXX.XX XXX.XX 0.00 0.00	UGOL AI AM UDL SM ASI XX.XX XXXXXX XXXX.XX XXX.XX XXX.XX XXX.XX 0.00 0.00	UGOL AI AM UDL SM ASI XK XXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX	UGOL AI AM UDL SM ASI XK YK XX.XX XXXX.XX XXXX.XX XXXX.XX XXXX.XX XXXX.XX XXXX.XX 0.00 0.00	UGOL AI AM UDL SM ASI XK YK ZK XX.XX XXX.XX XXX.XX XXX.XX XXX.XX XXXX.XX XXXXX.XX XXXX.XX XXXXX.XX XXXXX.XX XXXX.XX XXXXX.XX XXXXX.XX XXXX.XX XXXXX.XX XXXXX.XX XXXXXX	UGOL AI AM UDL SM ASI XK YK ZK INT XX.XX XXX.XX XXX.XX XXX.XX XXX.XX XXXX.XX XXXX.XX XXXX.XX XXXX.XX XXX.XX XXX.XX XXX.XX XXXX.XX XXXXX.XX XXXX.XX XXXXX.XX XXXXX.XX XXXX.XX XXXXX.XX XXXX.XX XXXX.XX XXXX.XX XXXX.XX XXXX.XX XXXX.XX XXXX.XX XXXX.XX XXXX.XX XXXXXX	UGOL AI AM UDL SM ASI XK YK ZK INT OXK XXXX XX XXXXXX XXXXXX XXXXXX XXXXXX XXXX	UGOL AI AM UDL SM ASI XK YK ZK INT OXK OYK XX.XX XXX.XX XXXX.XX XXX.XX XXX.XX XXX.XX XXX.XX XXX.XX XXX.XX XXXXXX	UGOL AI AM UDL SM ASI XK YK ZK INT OXK OYK OZK xx.xx XXXXXX XXXX.xX XXXX.XX	UGOL AI AM UDL SM ASI XK YK ZK INT OXK OYK OXK UGOL AI AM UDL Int Int

Организа	ция-за	аказчик			:								
Магнитно	е скл	онение (п	град)		:10	5.82							
Альтитуј	ца сто.	ла ротора	а́(м)		:5	0.82							
Диаметр	ствола	а скважи	ны (м)		:								
Диаметр	колоні	ны (м)			:								
Текущий	забой	(м)			:								
Проектны	ий заб	DЙ (M)			:								
Проектно	ре сме	цение (м))		:								
Проектнь	ий ази	мут магни	итный (гр	оад)	:								
Проектнь	ий ази	мут истин	ный (гра	эд)	:								
Проектна	ая оши	бка смеще	ения (м)		:								
Ошибка и	ізмереі	ния угла	искривле	ения (гра	ад) :								
Ошибка и	ізмереі	ния азимч	јта искрі	ивления ((град):								
Условия	прове,	дения из	ерения		· :								
Дата исо	ледов	ания			:								
DEPT	UGOL	AI	AM	UDL	SM	ASI	ХК	YK	ZK	INT	OXK	OYK	OZK
xxxx . xx	xx.xx	****.**	****.**	****.**	****.**	****.**	*****	*****.**	*****.**	****.**	xx.xx	xx.xx	xx.xx
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-50.82	0.00	0.00	0.00	0.00
230.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	179.18	0.00	0.00	0.00	0.00
377.60	14.76	267.25	250.43	1.63	18.91	267.25	-18.88	-0.91	325.15	1.00	0.00	0.00	0.00
1099.91	14.76	267.25	250.43	25.46	202.93	267.25	-202.70	-9.74	1023.63	0.00	0.00	0.00	0.00
1519 76	26 94	72 95	56 03	37 10	466 02	97E 7E	-161-00	46 69	11.95 01.	1 00	0 00	0 00	0 00

7. В расчет глобальных координат добавились новые местные системы (МСК.***).

Геомагнитный кальк	улятор				2	×
Система геодезич параметров (дату	еских м)	\sim	Дат	ra [18.06.2018 🗸	
Цилиндрическая проекция	PNG_4	\sim	гю гра	1ер б 1. зоны	13 🗹 Расчёт зоны	
Геомагнитная модель	МСК16 - зона 3 МСК63 - зона 1 МСК63 - зона 2		^	точнённ еомагни	юе эталонное ітное поле	
модель описывае	СК1963_V3 - зона 2 МСК23 - зона 1 МСК23 - зона 2			2.2019		
Координаты	МСК59 - зона 1					
💿 Широта, гр	МСК59 - зона 2 МСК59 - зона 3			гота, гра	74,88051856 🗐	
Смещение	МСК56 - зона 1			щение	4331292 9297	
север, м	МСК56 - зона 2			осток, м	4551252,5251	
	МСК56 - зона 3 МСК56 - зона 4			ота, м	0,0000	
World Magnetic	СК1963_Q - зона 5 PNG-4		¥			

8. В проектировании профиля добавилась возможность копировать объект бурения в шаблон куста.

👌 Добавит	ь 🔀 Удалить 🖨	Загрузить	Копировать •	冒 Расчет коор,	цинат (F2)
Список объ	ектов бурения		Копировать	объект	
	Название	Глубина	Копировать	объект в шаблон куста	, м
Глубина по	вертикали - 1865	L			
- на ц	ель спроектирован і	профиль	- цель с шабло	она куста 🗾 - локаль	ная цель
- на ц Параметры	ель спроектирован і объекта бурения	профиль	- цель с шабло	она куста 🗾 - локаль	ная цель
- на ц Параметры Название	ель спроектирован объекта бурения Глубина по вертика	профиль	- цель с шабло	она куста локаль Тип цели • Объект/Цель	ная цель

9. В проектировании профиля при трехмерном отображении добавилась возможность отображать наклонную плоскость.

Плоскость задается с помощью следующих параметров:

- глубина по вертикали (точка расположена «под устьем», ХҮ равны 0);
- наклон плоскости;
- азимут наклона.

При отображении плоскости рассчитываются следующие параметры:

- минимальное расстояние от плоскости до текущего замера;
- ствольная глубина профиля при «вскрытии» этой плоскости.

Данная функция находится в тестовом режиме. Решается вопрос, к какой сущности (нефтегазоносные пласты или цели бурения) добавить такую возможность.

10. В проектировании профиля при трехмерном отображении добавилась возможность отображать данные «не в кубе».

Данная функция находится в тестовом режиме. Решается вопрос использования этой функции на всех трехмерных отображениях.

11. В проектировании профиля добавилась возможность задавать цвет и толщину отображаемых стволов.

	🖗 Добавить замеры 📓 Проектирование Объекты бурения 🏠 Отчёт 📴 Настройки	
Инклинометрия	Табличные данные Вертикальная проекция Горизонтальная проекция Трёхмерное построение Диаграммы изменения параметров профиля Ко	т
Анализ отклонений стволов скважин		
Анализ сближений стволов скважин	Настройки отображения)
	Обсадные колонны Геология Комментарии Стволы	
Направление азимута: истинный	Ствол: 837(п) Цвет линий Толщина линии 2 - Цвет линий Толщина линии 2 - Ствол:837 (план)	

12. В проектировании профиля в настройках отображения добавилась возможность задавать размер шрифта для комментариев, обсадных колонн, пластов, а также добавились настройки отображения для объектов бурения

замер	ы 🗐 Проект	ирование С	бъекты бурения	סדי 🏀	іёт 🔀	Настройки		
нные	Вертикальная	проекция Го	ризонтальная проек	ция Трёхм	ерное построен	ие Диаграммь	и изменения параметров профиля	Конт
ne Ha	стройки отобр	ажения						×
ι	Обсадные коло	нны Геология	Комментарии Ст	гволы Объ	екты бурения (ц	ели)		
	Глубина по стволу, м	Глубина по вертикали, м	Глубина по вертикали (море), м	1	Kon	іментарий	Настройки Комментарий	
	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	391,49	391,49	9 Глуб. ст59 Зенит-111,	і5,36; ,16; Азим28,16		Цвет линий •••• Размер шрифта 8 •• Для удаления комментария нажмите клавишу "Del"	

13. В анализе сближений в настройках отображения добавилась возможность задавать размер шрифта для комментариев, расстояний и других отображаемых объектов.

Табличные	данные Графические данны	не Диаграмма сбли	жений Опасные сбл	ижения
	3D 2Dh 2Dv Pol		Скважина/Ствол	☐ Сближен ✓ Мин. сбл
	Настройка отображения			×
	Скважина/Ствол	Наличие Цвет лин	ии Толщина Цвет мет линии	гки 🔨
	Скв-10/S-1452		1	
	Скв-01/Р-2138	\checkmark	1	
	Скв-01/Р-2138 копия	\checkmark	1	
	Скв-02/1-2033	\checkmark	1	
	Скв-03/І-2021	\checkmark	1	
	Скв-04/Р-2135	\checkmark	1	
	Скв-05/Р-2024	\checkmark	1	
	Скв-06/Р-2012	\checkmark	1	
	Скв-07/Р-2023	\checkmark	1	
	Скв-08/І-2143	\checkmark	1	
	Скв-09/І-2133	\checkmark	1	
				~
		Выбрат	ъ все Снять выдел	ление
	Объекты бурения (цели)	r		
	- круг допуска		2 🚔	• …
	- центр точки цели	толщина линии	з 🔹 цвет 🗖	
	- горизонтальная часть		2 🚔	▼ ···
	Минимальные расстояния			- Del
	- в горизонтальной плоск	ости	1 •	▼…
	- в пространнстве	линии	1	
	Размер шрифта			
	комментарий 8 🚔 г	цели 8 🚔 геоло	гия 8 🚔 ствол	8 🚔
	расстояние 8 🚔 и	уст 8 🚔 данны	ыe 8 ♠	
		L.	Сохранить Зак	рыть

14. В проектировании профиля добавилась возможность задавать виртуальные замеры и производить с ними расчеты по отклонению.

🗚 🗇 Проектирование про	филя / Анали	з сближений v1	7.10 [31400111	KIT (mag), скв.	280, куст. 317	, Савуйское1]								-		l ×
	🔄 Добавит	ь замеры	Проектировані	ие Объекты	бурения	🇞 Отчёт	50 H	laстройки					Ha	вигатор п	о инкли •	нометри
Инклинометрия	Табличные д Тип контро	данные Верти ля отклония	кальная проекц	ция Горизонта	альная проек	ция Трёхмерн	ое построение	Диаграммы и	зменения	параметр	ов профил	я Контр	оль отклон	ения		
Анализ отклонений стволов скважин	Оравенство ствольных глубин 🖲 минимальное расстоян				ояние между	замерами 🔿 г	терпендикуляр	ная плоскость	Выбери	пе ствол д	ля анализа	3140011	1 IGN73 (ma	g)	~	
		Исходн	ый ствол			Анализиру	/емый ствол			Разница		Расстоян	ние, м	Напр	авлени	e i
Анализ сближений стволов скважин	Глубина по стволу, м	Глубина по вертикали, м	Зенитный угол, град	Азимут дирекц., град	Глубина по стволу, м	Глубина по вертикали, м	Зенитный угол, град	Азимут дирекц., град	верт. глубин, М	зенит., а град	зимут., град	3D	2D (rop.)	значение, град	Ү, м	Х, м
	2260,000	2233,174	2,50	17,44	2260,000	2233,560	1,14	56,52	0,387	1,36	-39,08	58,491	58,490	148,20	-49,710	30,824
	2280,000	2253,155	2,50	17,44	2280,090	2253,646	1,15	51,26	0,491	1,35	-33,82	59,088	59,086	148,28	-50,262	31,066
Направление азимута:	2300,000	2273,136	2,50	17,44	2300,077	2273,630	0,97	46,53	0,494	1,53	-29,09	59,664	59,662	148,40	-50,819	31,260
дирекционный	2320,000	2293,120	2,00	17,44	2320,022	2293,572	0,79	42,97	0,452	1,21	-25,53	60,175	60,174	148,55	-51,336	31,395
	2340,000	2313,109	1,75	17,44	2340,019	2313,567	0,71	38,53	0,458	1,04	-21,10	60,579	60,578	148,67	-51,746	31,500
Магнитное склонение: 20.00 град.	2360,000	2333,099	2,00	17,44	2360,083	2333,630	0,73	33,14	0,531	1,27	-15,70	60,977	60,975	148,81	-52,164	31,578
and a second second	2380,000	2353,088	1,75	17,44	2380,000	2353,545	0,77	31,39	0,457	0,98	-13,95	61,355	61,354	148,95	-52,566	31,643
Сближение мерилиан	2400,000	2373,077	2,00	17,44	2380,000	2353,545	0,77	31,39	-19,532	1,23	-13,95	64,923	61,915	148,93	-55,609	33,50E
-1,10 град.	2420,000	2393,066	1,75	17,44	2380,000	2353,545	0,77	31,39	-39,521	0,98	-13,95	73,929	62,479	149,00	-63,366	38,081
	2440,000	2413,057	1,75	17,44	2380,000	2353,545	0,77	31,39	-59,512	0,98	-13,95	86,668	63,006	149,00	-74,286	44,644
💥 Закрыть	2450,000	2423,053	1,75	17,44	2380.000	2353 545	0 77	31 39	-69 507	0.98	-13,95	93,991	63,270	149,00	-80,562	48,416
	Виртуальные замеры (F2)				L.		· ·									
	2465,00	2438,04	4 2,00	0 18,00	2380,00	2353,545	0,7	31,3	9 -84,499	1,23	-13,39	105,81	6 63,69	5 148,	25 -89,	978 55,60
	2500,00	2473,03	8 1,00	D 16,00	2380,00	2353,545	0,7	7 31,3	9 -119,493	3 0,23	-15,39	135,70	3 64,31	7 151,	06 -118	,75 65,66
					-					-						

Добавление замеров клавиша «Стрелка вниз». Клавиша «Tab» перемещение по значениям. Клавиша «Insert» вставка строки. Клавиша «Del» при выделенном первом столбце удаляет строку замера.

Виртуальные замеры (F2)									
2465,000	2438,044	2,00	18,00						
2500,000	2473,038	1,00	16,00						

Расчет параметров отклонения осуществляется с помощью клавиши «F2» или кнопки «Расчет виртуальных замеров». Фокус строки в верхней таблице переходит к замеру «отхода».

Если заданы виртуальные замеры и рассчитаны параметры отклонения, то при выводе отчета по отклонениям в конце основных замеров будут присутствовать данные виртуальные замеров.

X	19 - C			3140011	1 KIT (mag)	_ПРОФИЛЬ	_Анализ_О	тклонений <mark>,</mark> м	инимально	е расстояни	е между замер	ами.xlsx	[Режим	совместим	ости] - Мі	crosoft Excel
Фай	л Глав	ная В	ставка	Разметка стр	аницы	Формулы	Данные	Рецензи	оование	Вид						
Обыч	ный Разме стран Режим) Ц Ст І Пі тка ицы 🔲 Вс ы просмот	граничный редставлен о весь экран ра книги	режим ия н	Линейка [Сетка [Пс	 Строка ф Заголовк жазать 	ормул и М	Q Іасштаб 1009 Ма	Масштаб выделенн сштаб	по ному 3	овое окно порядочить все акрепить облае	е 🛄	Разделит Скрыть Отобраз	гь ііі ііі́ кить ііі́	Сохран рабочую о	ить Пе бласть друг
Обы	R120C16	м	. (=	<i>f</i> _x -46,8	394											
1	смог2 док	умен3а в о	бычн4м ре	жиме,5	6	7	8	9	10	11	12	13	14	15	16	17
2							C	тчёт по инкл	инометрии							
3						Мест	орождение	Савуйское 1,	куст: 317. ск	важина: 280						
4	Исходный ствол: 31400111 КПТ (mag) / Анализируеный ствол: 31400111 IGN73 (mag) (тип контроля отклонения - иннинальное расстояние между замерани)															
5															_	
6	Система ге	одезич. па	раметров (д	атум)		CK-42		Геодезические координаты: широта °					61°53'58,003"			
0	цилиндрич	еская прое	кция			Gauss-Kruger		Геодезическ	ие координа	гы: долгота				/3*45	8,961	
9	Номер 6 градусной зоны: 13					Глобальные	координаты:	смещение н	а север, м			4344	19.08			
10	Магнитное	склонение	.•			20°0'		Сближение м	еридианов.)	a boer only in			-1	°6'	
11	Длина верт	тикального	участка, м			0,00		Направление	азимута					дирекц	ионный	
12									-							
13		Искодн	ный ствол			Анализиру	емый ствол		Разница Рассто			яние, м	н	lanpaвление		
14	Глубина по стволу, м	Глубина по вертикали, м	Зенитный угол, град	Азимут дирекц., град	Глубина по стволу, м	Глубина по вертикали, м	Зенитный угол, град	Азимут дирекц., град	вертикальных глубин, м	зенитных углов, град	азимутальных углов, град	3D	2D (rop.)	значение, град	Ү , м	Х, м
129	2340	2313,109	1,75	17,44	2340,019	2313,567	0,71	38,53	0,458	1,04	-21,1	60,579	60,578	148,67	-51,746	31,5
130	2360	2333,099	2	17,44	2360,083	2333,63	0,73	33,14	0,531	1,27	-15,7	60,977	60,975	148,81	-52,164	31,578
131	2380	2353,088	1,75	17,44	2380	2353,545	0,77	31,39	0,457	0,98	-13,95	61,355	61,354	148,95	-52,566	31,643
132	2400	23/3,0//	1 75	17,44	2380	2353,545	0,77	31,39	-19,532	1,23	-13,95	64,923 73,929	61,915	148,93	-55,609	33,506
134	2420	2413.057	1,75	17,44	2380	2353,545	0,77	31,35	-59,512	0,98	-13,95	86.668	63.006	149	-74.286	44,644
135	2450	2423,053	1,75	17,44	2380	2353,545	0,77	31,39	-69,507	0,98	-13,95	93,991	63,27	149	-80,562	48,416
136																
137	Виртуальны	е замеры:														
138	2465	2438,044	2	18	2380	2353,545	0,77	31,39	-84,499	1,23	-13,39	105,816	63,695	148,25	-89,978	55,688
139	2500	2473,038	1	16	2380	2353,545	0,77	31,39	-119,493	0,23	-15,39	135,703	64,317	151,06	-118,756	65,668
140																
138 139	2465	2438,044 2473,038	2	18	2380	2353,545 2353,545	0,77	31,39	-84,499 -119,493	0,23	-13,39 -15,39	105,816	63,695 64,317	148,25	-89,978 -118,756	55,688
141																

При формировании отчета по отклонениям параметр «Тип контроля отклонений» перемещен в отдельную ячейку. Раньше дописывался в конец строки названий анализируемых стволов.

15. В анализе сближений при проведении предварительного анализа добавилась возможность изменять тип расчета расширяющей сферы.

In the example below, COMPASS in	vill select all offset designs within a	range	of 10 ft plus 25 ft /	1000 ft
of measured depth. Note, the range	is a cube with sides of 2x the value	and r	not a sphere.	

In the example above, at 10,000 ft MD on the reference design, COMPASS will select offset design that fall within a box 520 X 520.

Раньше использовалась расширяющая сфера, «вписанная в компасовский куб». На глубине 2000 метров имеет сферу радиусом 260 метров (при входных параметрах: 60 м. и 100/1000 м.). Теперь можно «описать» сферу вокруг этого куба, тогда сфера на глубине 2000 метров будет иметь радиус 367.6 метров. Для этого необходимо установить галочку под кнопкой «Расчет».

Выбор стволов по умолчанию выбираются только основные стволы, приоритет выбора у фактического ствола	
✓ Предварительный анализ начальный диапазон, м 60 расширение, на 1000 м 100	сфера описывает куб
☐ Добавить направление к расстоянию ✓ Палитра по умолч. ☐ 3D-пропорц. оси	

16. При добавлении замеров инклинометрии появилась возможность эмуляции фактических замеров при роторно-турбинном бурении.

Ввод	инклинометрии			×
	Вставить из буфера	Вставить в указанн	іую позицию (Ctrl + V)	
Им	портиз Las Dan Ut	Очистить Удали	ить выбранные строки	и
	Азимут) истинный (True)) дирекционный (Grid)) магнитный (Mag)	Направление азим Сближение мерид Магнитное склоне	мута: дирекционнь дианов:-1°11' ение: 0°0'	ий
Ct Ct	rl+C - копировать в буф rl+V - вставить из буфер	өөр Ctrl+X - вырезать Da	рад.Мин	
	Глубина (ствол), м	Зенитный угол, град	Азимут, град	^
1	0,00	0,00	0,00	
2	10,00	0,12	120,17	
3	15,00	0,15	174,60	
- 4	20,00	0,14	214,34	
5	25,00	0,20	220,80	
6	30,00	0,21	197,26	
7	35,00	0,18	178,25	
8	40,00	0,37	199,05	
9	45,00	0,27	208,20	
10	50,00	0,38	219,08	
11	1 55,00	0,40	220,95	
12	2 60,00	0,30	224,46	
13	65,00	0,39	224,65	
14	4 70,00	0,35	206,29	
15	5 75.00	0.35	193.09	۷
<		_	>	
	Добавить промежуточн Прямая-Дуга ОДуга	ные точки – 📃 Со	охранить Отмена	а

Каждый участок делиться на два равных по длине участка. В зависимости от выбранного переключателя один из участков будет стабилизацией, а другой искривлением (дугой). За счет такого деления, значение интенсивности искривления увеличивается вдвое. При этом расчетные значения ХҮZ будут немного отличаться от первоначальных значений.

17. В проектировании профиля добавилась возможность отображать анализируемый ствол и виртуальные замеры, а также задавать их цвет и толщину.

🖣 Проектирование прос	филя / Анализ сближений v17.11 [ION, скв. 5565Gr, куст. 579, Федоровское]
	🖗 Добавить замеры 🗐 Проектирование Объекты бурения 🏠 Отчёт 🔄 Настройки
инклинометрия	Табличные данные Вертикальная проекция Горизонтальная проекция Трёхмерное построение Контроль отклонения Диаграммы изм
Анализ отклонений	😿 Контроль положения забоя 🛛 ?{ Изменение профиля на участке 🔤 😭 Просмотр усреднённого профиля 🔍 🍒 Эллипс неопределенност
стволов скважин	Ш Настройки отображения 🛛 🕹 🗙
Анализ сближений стволов скважин	Гл) Обсадные колонны Геология Комментарии Стволы Объекты бурения (цели)
	Исходный ствол: ЮМ Материнский ствол:
	Цвет линий 📕 Толщина линии 2 🛉 Цвет линий 📕 🛛 Толщина линии 2 🐳
Направление азимута:	Г ✓ Анализируемый ствол: SPR
дирекционный	Цвет линий 🔽 🐨 Толщина линии 2 💌
Магнитное склонение:	
17,36 град.	Цвет линий 🔽 🗸 … Толщина линии 2
Сближение меридиан: -1,19 град.	

После выбора вкладки «Контроль отклонения» в трехмерном построении дополнительно отображается анализируемый ствол и расстояние в пространстве между текущим замером исходного ствола и расчетным замером (в зависимости от типа контроля отклонения) анализируемого ствола.

🗗 Добавит	ь замеры 🔋	Проектирован	ие Объекты	бурения	🏷 Отчёт	E H	lастройки				
Табличные	данные Верти	кальная проекі	ция Горизонта	альная проек	ция Трёхмерн	ое построение	Контроль от	лонения	Диагра	ммы изменен	ния паран
Тип контро Оравенст	ля отклония во ствольных гл	убин 🔘 мини	имальное рассто	ояние между	замерами 🔿 і	перпендикуляр	ная плоскость	Выбери	ите ствол	для анализа	1
	Исходн	ный ствол			Анализир	уемый ствол			Разница		Расстоя
Глубина по стволу, м	Глубина по вертикали, м	Зенитный угол, град	Азимут дирекц., град	Глубина по стволу, м	Глубина по вертикали, м	Зенитный угол, град	Азимут дирекц., град	верт. глубин, м	зенит., град	азимут., град	3D
950,00	834,06	25,50	294,78	966,14	848,66	24,74	307,68	14,61	0,76	-12,90	91,59
960,00	843,10	25,13	294,78	975,73	857,39	24,14	307,68	14,30	0,99	-12,90	92,49
970,00	852,17	24,50	294,78	985,24	866,10	23,42	307,68	13,92	1,08	-12,90	93,39
980,00	861,30	23,88	294,78	994,69	874,80	22,59	307,68	13,50	1,29	-12,90	94,28
990,00	870,47	23,00	294,78	1004,27	883,66	21,97	307,68	13,19	1,03	-12,90	95,15
1000,00	879,70	22,13	294,78	1014,04	892,73	21,65	307,68	13,03	0,48	-12,90	95,96
1200,00	1045,28	45,00	300,00	1197,60	1067,47	13,22	302,68	22,19	31,78	-2,68	138,54
1300,00	1116,08	45,00	310,00	1276,44	1144,46	10,51	299,54	28,38	34,49	10,46	178,62
2021,70	1736,10	50,03	96,95	1872,50	1737,17	1,37	277,68	1,06	48,66	-179,27	143,77
2121,17	1800,00	50,03	96,95	1934,94	1799,60	0,70	277,68	-0,40	49,33	-179,27	141,56

При добавлении виртуальных замеров в трехмерном построении дополнительно отображаются виртуальные замеры и расстояние в пространстве между текущим виртуальным замером и расчетным замером (в зависимости от типа контроля отклонения) анализируемого ствола.

Тип контро О равенств	ля отклония ю ствольных глу	убин 🖲 мини	мальное рассто	яние между:	замерами 🔿	перпендикуляр	ная плоскость		
	Исходн	ый ствол		Анализируемый ствол					
Глубина по стволу, м	Глубина по вертикали, м	Зенитный угол, град	Азимут дирекц., град	Глубина по стволу, м	Глубина по вертикали, м	Зенитный угол, град	Азимут дирекц., град		
920,00	807,15	27,00	294,78	937,14	822,48	26,14	307,68		
930,00	816,08	26,50	294,78	946,79	831,17	25,66	307,68	Γ	
940,00	825,05	26,00	294,78	956,50	839,93	25,26	307,68	[
950,00	834,06	25,50	294,78	966,14	848,66	24,74	307,68	ſ	
960,00	843,10	25,13	294,78	975,73	857,39	24,14	307,68	ſ	
970,00	852,17	24,50	294,78	985,24	866,10	23,42	307,68	ſ	
980,00	861,30	23,88	294,78	994,69	874,80	22,59	307,68	ſ	
990,00	870,47	23,00	294,78	1004,27	883,66	21,97	307,68	[
1000,00	879,70	22,13	294,78	1014,04	892,73	21,65	307,68	Γ	
1200,00	1045,28	45,00	300,00	1197,60	1067,47	13,22	302,68	[
1300,00	1116,08	45,00	310,00	1276,44	1144,46	10,51	299,54		
2021,70	1736,10	50,03	96,95	1872,50	1737,17	1,37	277,68	[
	1	1		(v		2	

- 1	биртуальные	Samepor (12)						
	1400,00	1183,72	50,00	300,00	1356,14	1222,87	10,35	297,68
	1500,00	1244,67	55,00	310,00	1418,06	1283,98	8,10	302,68
	1600,00	1308,96	45,00	300,00	1481,95	1347,42	6,29	299,68

При перемещении по таблице с виртуальными замерами происходит перерисовка отображения.

18. В проектировании профиля добавилась возможность отображать расстояние в пространстве до выбранной на вкладке «Контроль отклонения» цели (объекта бурения).

				Выберите объект	бурения (цель) TVD	- 1800	<u>~</u>	g	
Исходный ствол		Расстоя	ние на центр к	руга, м	Азимут дирекц., град				
Глубина по стволу, м	Глубина по вертикали, м	в пространстве	в гориз. плоскости	в вертик. плоскости	на левый край	на центр	на правый край		
1000,00	879,70	953,47	249,31	920,30	348,84	0,41	11,98		
1200,00	1045,28	786,32	220,68	754,72	13,42	26,52	39,62		
1300,00	1116,08	718,91	221,56	683,92	31,84	44,88	57,92		
2021,70	1736,10	85,25	56,43	63,90	37,03	99,41	161,79		
2121,17	1800,00	20,00	20,00	0,00		270,00			

Включить отображение необходимо в настройках отображения на вкладке «Объекты бурения»

19. В обратном проектировании (метод «Дуга-Прямая-Дуга») добавилась возможность рассчитывать зенитный и азимутальный углы на последнем участке этого метода (интерполяция).

	Проектир	ование у	17.11											
🚱 Вставить метод (Ins) 📮 Удалить метод (Del) 💢 Очистить 📹 С							📕 Сохрани	ть 📄 Верну	ть Разбить	метод Граф	оическое отоб	ражение		
	втоматич	еский пе	ресчёт данн	ных инклі	инометии (при	изменении	параметров мет	года проектир	ования) 🗌 К	онтроль пол	тожения забоя	06ъекты	бурения и з	она контакта
N₽	Глубина по стволу, м	Длина участка, м	Зенитный угол, град	Азимут, град	Вертикальна: глубина, м	я Вертикалі глубин (море),	ыная Лок. а смещение м к северу, м	Лок. смещение к востоку, м	Отклонение от устья, м	Азимут смещения, град	Пространств. интенсив., град/10 м	Угол установки отклон., град	Интенсив. по зениту, град/10 м	Интенсив. по азимуту, с. град/10 м
1	0,00	0,00	0,00	0,00	0,0	0 -21	5,09 0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
2	300,00	300,00	0,00	0,00	300,0	0 8	14,91 0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
3	500,65	200,65	20,07	338,01	496,5	8 28	31,49 32,25	5 -13,02	34,78	338,01	1,00	338,01	1,00	16,85
4	1482,75	982,10	20,07	338,01	1419,0	7 120	3,98 344,68	-139,18	371,72	338,01	0,00	0,00	0,00	0,00
5	2329,43	846,68	80,00	80,00	2000,0	0 178	14,91 600,00	300,00	670,82	26,57	1,00	104,64	0,71	-0,92
6														
<														
	Простра) Глубина) Длина уч) Глубина Обратное	нственна по верти частка ст по ствол проекти	ая интенсив ікали абилизации у рование	зность 1 1: и: бал	: 1,00 : 496,58 панс интенсивн	2: 141 4. 98 232	Направ/ 3енитнь 9,07 Азимута 2,10 9,43	іение касателі ій угол, град: льный угол, гр	ыной в конечн	ой точке 0,00 0,00	Координаты це Глубина по вер Смещение на с Смещение на в Имя цели: t	ли: ртикали, м: 2 2 л 2 л 2 л 2 л 2 л 3 л 2	000,00 🔳 Іокальные 600,00 300,00	Глобальные 437946,03 2248945,28
			Обра Пар О О Ин	атное пр раметры Длина у Глубина Зенитн Зенит / нтенсив	ректировані ы обратного участка (ства а по вертика ый угол, гра і Азимут, гра зность по зеі	ие проектир ол), м али, м Д д ниту, град/	ования 200 10м:		<mark>В</mark> Интерпол	Напраи Зенитн яция (расч	вление касат њий угол, гра чет зенита и	гельной в кс ид: азимута)		

При выбранном переключателе «Длина участка» или «Глубина по вертикали» появляются дополнительные кнопки «Интерполяция». После ввода соответствующего значения и нажатии кнопки, выбирается переключатель «Зенит/Азимут» и рассчитываются параметры интерполированного замера (зенит, азимут, пространственная интенсивность). После этого необходимо выполнить расчет профиля, нажав кнопку «Расчёт (F2)».

Обратное пректирование			
Параметры обратного проектирования			H
🔿 Длина участка (ствол), м			3
🔿 Глубина по вертикали, м	1933,93 📃	٦Ļ	A
🔾 Зенитный угол, град	61,30	V	
🖲 Зенит / Азимут, град	61,30	72,45	
Пространств. интенсивность, град/10м:	1,00		

Если необходимо изменить введенное значение, то необходимо снова выбрать соответствующий переключатель «Длина участка» или «Глубина по вертикали» скорректировать значение и нажать на кнопку «Интерполяция». При закрытии формы, программа не сохраняет параметры дуги, на которой выполнялась интерполяция (кнопки «Интерполяция» не отображаются на созданных ранее замерах).

20. При анализе сближений/отклонений на 2D плоскостях добавилась возможность скрывать линии координатной сетки

