Проектирование профиля / Анализ пересечений (V17.12)

Шаблон Куста (V17.12)

1. Пользовательский отчет по инклинометрии для формирования в Excel:

Шаблоны отчетов должны располагаться в папке «Рабочий каталог\Templates\UsersProfil\...». Необходимый шаблон можно выбрать из списка шаблонов.

TrajectUser1.xlt	~	🔣 Пользв. Excel
TrajectUser1.xlt TrajectUser2.xlt TrajectUser3.xlt TrajectUser4.xlt TrajectUser5.xlt		

Коды параметров для шапки отчета (могут быть расположены на разных вкладках):

Месторождение	[#FIELD#]
Куст	[#BLOCK#]
Скважина	[#WELL#]
Ствол (вариант расчета)	[#WELLBORE#]
Месторождение/Куст/Скважина/Ствол	[#FIELD_BLOCK_WELL_WELLBORE#]
Дата	[#DATA#]
Система геодезич. параметров (датум)	[#DATUM#]
Цилиндрическая проекция	[#PROJECTION#]
Номер зоны	[#N_ZONE#]
Геомагнитная модель	[#GEOMAG#]
Альтитуда	[#ALTITUDA#]
Длина вертикального участка	[#DISTA_VERT#]
Геодезические координаты: широта	[#LATITUDE#]
Геодезические координаты: долгота	[#LONGITUDE#]
Глобальные координаты: смещение на север	[#GLOB_N#]
Глобальные координаты: смещение на восток	[#GLOB_E#]
Магнитное склонение	[#DECLINATION#]
Магнитное наклонение (Inclination - Magnetic DipAngle)	[#INCLINATION#]
Напряженность магнитного поля (Total Field)	[#TOTAL_FIELD#]
Сближение меридианов	[#CONANGLE#]
Суммарная поправка (MAG->GRID)	[#MAG_TO#]
Направление азимута	[#AZM_REF#]
Азимут вертикальной плоскости (Vertical Section Azimuth)	[#VSA#]
Извилистость (Tortuosity)	[#TORT#]
Смещение вдоль ствола скважины (AHD)	[#AHD#]
Индекс сложности бурения (DDI)	[#DDI#]
Индекс удаленности забоя от вертикали (ERD ratio)	[#ERD_R#]

рмат по образцу 🛛 Ж. 🔏 Ч. 🐨 🔹 🏂 х 🛕 х 📄 票 🗃 译 譯 🖾 Объединить и поместить в цен мена f_{x} 11 12 3 4 6 7 9 10 5 Отчёт по инклино [#FIELD_BLOCK_WELL_V ΤV F#INEO MD Система геодезич. параметров (датум) Цилиндрическая проекция [#DATUM#] [#PROJECTION#] Геодезические координаты: широта [#LATITUDE#] еские координаты: дол

Глубина по стволу, м	[#T_MD]
Зенитный угол, град	[#T_INC]
Азимут магнитный, град	[#T_AM]
Азимут истинный, град	[#T_AI]
Азимут GRID, град	[#T_AG]
Глубина по вертикали, м	[#T_TVD]
Абсолютная отметка, м	[#T_TVD_M]
Смещение к северу, м	[#T_YL]
Смещение к востоку, м	[#T_XL]
Отклонение от устья, м	[#T_DEV_U]
Азимут смещения, град	[#T_A_DEV]
Отход по заданному азимуту, м	[#T_VSEC]
Гл. смещение к северу, м	[#T_YG]
Гл. смещение к востоку, м	[#T_XG]
Пространст. интенсивность, град/10 м	[#T_DOGL]
Угол установки отклон., град	[#T_TFO]
Интенсив. по зениту, град/10 м	[#T_BUILD]
Комментарий	[#T_COMM]
Широта	[#T_LATITUDE]
Долгота	[#T_LONGITUDE]
Интенсив. по азимуту, град/10 м	[#T_TURN]
Смещение вдоль ствола скважины (AHD), м	[#T_AHD]
Индекс удаленности забоя от вертикали (ERD ratio)	[#T_ERD]
Индекс сложности бурения (DDI)	[#T_DDI]

Коды параметров для основной таблицы [#TABLE_PROFIL#]:

Таблица может располагаться на одной или на разных вкладках. Начало таблицы формирует код [#TABLE_PROFIL#]. Наполнение таблицы [#TABLE_PROFIL#] может регулироваться в окне «Отчет» следующими галочками (блок «Добавить в общий отчет»):

- Обсадные колонны.
- Геология.
- Комментарии к замерам.

Код параметра «информация о забое» при наличии этой таблицы [#INFO_MD_TVD#]

	Глубина по стволу, м	Зенитный угол, град	Азимут магнитный, град	Азимут истинный, град	Азимут GRID, град	Глубина по вертикали, м	Абсолютная отметка, м	Смещение к северу, м	Смещение к востоку,м	Отклонение от устья, м
[#TABLE_PROFIL#]	[#T_MD]	[#T_INC]	[#T_AM]	[#T_AI]	[#T_AG]	[#T_TVD]	[#T_TVD_M]	[#T_YL]	[#T_XL]	[#T_DEV_U]
[#TABLE_PROFIL#]	стволу, м [#T_MD]	угол, град [#T_INC]	магнитный, град [#T_AM]	истинный, град [#T_AI]	GRID, град [#T_AG]	вертикали, м [#T_TVD]	отметка, м [#T_TVD_M]	северу, м [#T_YL]	востоку,м [#T_XL]	от устья [#T_DE\

F (
Глубина по стволу, м	[#I_MD]
Зенитный угол, град	[#T_INC]
Азимут магнитный, град	[#T_AM]
Азимут истинный, град	[#T_AI]
Азимут GRID, град	[#T_AG]
Глубина по вертикали, м	[#T_TVD]
Абсолютная отметка, м	[#T_TVD_M]
Смещение к северу, м	[#T_YL]
Смещение к востоку,м	[#T_XL]
Отклонение от устья, м	[#T_DEV_U]
Азимут смещения, град	[#T_A_DEV]
Отход по заданному азимуту, м	[#T_VSEC]
Гл. смещение к северу, м	[#T_YG]
Гл. смещение к востоку, м	[#T_XG]
Пространст. интенсивность, град/10 м	[#T_DOGL]
Угол установки отклон., град	[#T_TFO]
Интенсив. по зениту, град/10 м	[#T_BUILD]
Комментарий	[#T_COMM]
Широта	[#T_LATITUDE]
Долгота	[#T_LONGITUDE]
Интенсив. по азимуту, град/10 м	[#T_TURN]

Коды параметров для основной таблицы [#TABLE_PROFIL_INT#] (интерполяция):

Таблица может располагаться на одной или на разных вкладках. Начало таблицы формирует код [#TABLE_PROFIL_INT#]. Наполнение таблицы [#TABLE_PROFIL_INT#] может регулироваться в окне «Отчет» шагом интерполяции и следующими галочками (блок «Интерполяция по стволу» и блок «Добавить в общий отчет»):

- Замеры (контрольные).
- Обсадные колонны.
- Геология.
- Комментарии к замерам.

Код параметра «Информация о шаге интерполяции» при наличии этой таблицы [#INFO_INTER#]

	Глубина по стволу, м	Зенитный угол, град	Азимут магнитный, град	Азимут GRID, град	Глубина по вертикали, м	Абсолютная отметка, м	Смещение к северу, м	Сме
[#TABLE_PROFIL_INT#]	[#T_MD]	[#T_INC]	[#T_AM]	[#T_AG]	[#T_TVD]	[#T_TVD_M]	[#T_YL]	

Коды параметров для основной таблицы [#TABLE_COMM#] (комментарии):

Глубина по стволу, м	[#T_MD]
Зенитный угол, град	[#T_INC]
Азимут магнитный, град	[#T_AM]
Азимут истинный, град	[#T_AI]
Азимут GRID, град	[#T_AG]
Глубина по вертикали, м	[#T_TVD]
Абсолютная отметка, м	[#T_TVD_M]
Смещение к северу, м	[#T_YL]
Смещение к востоку, м	[#T_XL]
Отклонение от устья, м	[#T_DEV_U]
Азимут смещения, град	[#T_A_DEV]
Отход по заданному азимуту, м	[#T_VSEC]
Гл. смещение к северу, м	[#T_YG]
Гл. смещение к востоку, м	[#T_XG]
Пространст. интенсивность, град/10 м	[#T_DOGL]
Угол установки отклон., град	[#T_TFO]
Интенсив. по зениту, град/10 м	[#T_BUILD]
Комментарий	[#T_COMM]
Широта	[#T_LATITUDE]
Долгота	[#T_LONGITUDE]
Интенсив. по азимуту, град/10 м	[#T_TURN]

Таблица может располагаться на одной или на разных вкладках. Начало таблицы формирует код [#TABLE_COMM#]. В данной таблице присутствуют только комментарии.

	Глубина по стволу, м	Зенитный угол, град	Азимут магнитный, град	Азимут истинный, град	Глубина по вертикали, м	Абсолютная отметка, м	Смещение к северу, м	Смещение к востоку,м	Отклонение от устья, м
[#TABLE_COMM#]	[#T_MD]	[#T_INC]	[#T_AM]	[#T_AG]	[#T_TVD]	[#T_TVD_M]	[#T_YL]	[#T_XL]	[#T_DEV_U]

Значение параметра «Отход по заданному азимуту» ([#T_VSEC]) можно задать в окне «Отчёт». Выпадающий список формируется автоматически (азимут на введённые цели бурения и азимут забоя).

🗹 Магн. поправки - "град" 🗌 ,	Добавить разницу верт. глубин	SIB+MW	/D_Design	\sim
	Азимут вертикальной плоскос	ги, град	303,55	\sim

Коды диаграмм (могут быть расположены одной или на разных вкладках):

Трёхмерное отображение	[#GRAF_3D#]
Горизонтальная проекция	[#GRAF_GOR#]
Вертикальная проекция - Развертка	[#GRAF_VERT_R#]
Вертикальная проекция - ПО АЗИМУТУ	[#GRAF_VERT_AZM#]
Изменения параметров профиля	[#GRAF_PAR_CHANGE#]

Бурсофтпроект 2019

2. В анализ пересечений добавлена возможность совместного использования нескольких приборов, описанных по модели «Эллипс неопределенности» (W&dW), а также совместное использование приборов, описанных по модели «Эллипс неопределенности» и «Конус погрешности».

Описание инструмента	Описание инструмента			
Название Ion (сетка)	Название Poor magnetization			
Комментарий	Комментарий Wolff&dWardt			
Инструмент по умолчанию	Инструмент по умолчанию			
Тип погрешности (ошибки)	Тип погрешности (ошибки)			
🔿 Конус погрешности (ошибки)	🔿 Конус погрешности (ошибки)			
Эенитный угол/сетка погрешностей (ошибок)	Зенитный угол/сетка погрешностей (ошибок)			
	Оистематическая погрешность (ошибка)			

Ствол Х
Ствол Привязка второго ствола Геодезия
Наименование: 2 (факт)
✓ Фактический ствол ✓ Основной ствол Цвет проекции: Сrimson ✓
Инструмент для замера инклинометрии Если инструмент применяется до забоя, то глубину можно оставить нулевой
Инструмент 1: lon poor
Глубина инструмента 1 (ствол), м: 0
Инструмент 2: Good magnetization 🗸
Глубина инструмента 2 (ствол), м: 2000
Инструмент 3: Poor magnetization 🗸
Глубина инструмента 3 (ствол), м: 3000
🔚 Сохранить Отмена

При задании «Инструмент 1» прибора описанного по модели «ISCWSA» остальные инструменты будут игнорироваться. При задании «Инструмент 2» и «Инструмент 3» прибора описанного по модели «ISCWSA» в анализе сближений будет использоваться только «Инструмент 1».

Совместную «работу» нескольких приборов можно посмотреть на форме «Инклинометрия/Эллипс неопределенности». Для этого в типе модели «Wolff&dWardt» необходимо выбрать из выпадающего списка «Инструмент из БД» и выполнить расчет.

🔳 Эллипс неоп	ределенности
Тип модели - инс	трумент
Wollf/dWardt	Инструмент из Б, 💛
	Rev4 💌 …

1

ШШ	Исходны	е данные		Данные р	асчета										
MD	INC	AZI	TVD	Highside	Lateral	Vertical	SemiMaj	or SemiMajor-v1	SemiMino	Min. Azimut	Semi-Axis 1	Semi-Axis 2	Semi-Axis 3	Ra	TFO
500,000	0,000	0,000	500,000	7,500	7,500	7,500	7,	500 7,500	7,5	90,00	7,500	7,500	7,500	7,500	8
870,000	37,000	292,000	844,815	13,050	13,050	13,050	13,	050 13,050	13,0	50 90,000	13,050	13,050	13,050	13,050	16
2970,000	40,000	300,000	2489,137	20,449	39,230	18,199	39,	230 39,230	18,9	04 119,989	39,230	20,449	16,444	25,439	15
3650,000	80,000	10,000	2854,645	28,618	38,407	27,532	38,	407 49,917	22,9	15 144,030	49,927	29,548	20,222	37,781	1
3850,000	92,000	0,000	2868,606	30,582	47,436	30,760	47,	799 54,210	23,4	49 147,530	54,229	32,431	21,030	44,260	1
				-			(~	-						
Covariand	e matrix														Т
	COVXX			COVXY		COVXZ		COVYY		COVYZ	C	OVZZ	Nar	ne Tools	
		56,25	50	(,000		0,000	5	6,250	0,000		56,25	0 Ion poor		
		170,30	03	(),000		0,000	17	0,303	0,000)	170,30	3 Ion poor		
		652,56	52	511	,541		63,114	124	3,780	-36,097	'	331,19	8 Good magr	netization	
		1813,22	28	934	,865		152,441	120	3,570	-137,864		757,99	2 Poor magn	etization	
		2250,19	90	1081	,991		178,269	123	8,355	-162,123		946,19	4 Poor magn	etization	

При формировании отчета по пересечениям для анализируемых стволов отображается информация о применении различных приборов.

Отчёт по сближению стволов скважин

Месторождение: Федоровское, куст: Проверка, скважина: 2, ствол: 2 (факт) Интервал анализа по стволу: от 0 м. до 3850 м. (интерполяция отсутствует) Система ошибок: Систематический эллипс (3-D 73,85% 2,0000 sigma)

		Список скважин	/стволов участвующих	в анализе	
Скважина	Ствол	Тип ствола	Тип инструмента	Название инструмента	Начало применения иструмента
			конус погрешности	Ion poor	от устья
2	2 (факт)	исходный	оистематическая погрешность (W&dW)	Good magnetization	2000
			оистематическая погрешность (W&dW)	Poor magnetization	3000
	1(4-1-2)		систематическая погрешность (W&dW)	Good magnetization	от устья
1	I (ψaki)	анализируемыи	систематическая погрешность (W&dW)	Poor magnetization	3000

Отчёт по сближению стволов скважин

Месторождение: Федоровское, куст: Проверка, скважина: 1, ствол: 1 (факт) Интервал анализа по стволу: от 0 м. до 4000 м. (шаг интерполяции 10 м.) Система ошибок: Систематический эллипс (3-D 95,00% 2,7955 sigma)

Скважина	Ствол	Тип ствола	Тип инструмента	Название инструмента	Начало применения иструмента
1	1 (days)	исхолный	систематическая погрешность (W&dW)	Good magnetization	от устья
	(waiti)	исходный	систематическая погрешность (W&dW)	Poor magnetization	3000,00
2	2 (daara)	анапизируемый	систематическая погрешность (W&dW)	Good magnetization	от устья
2	2 (φακι)	and worpy choire	систематическая погрешность (W&dW)	Poor magnetization	2000,00

Список скважин/стволов участвующих в анализе

Сравнение результатов расчета параметров эллипсоида с ПО «Compass»

	0.000 3000.000	3000.000 4000.000	Survey #1 Survey #1				good m good m	ag1 ag 2		10 g 20 g		
	Position uncertainty and All uncertainties at MD m	l hias at survey statio Incl deg	on 2.0 standard deviati Azim deg	ion TVD m	Highside> Unc. m	Lateral> Unc. M	Vertical> Unc. M	Magn. of Bias m	Semi-major Unc. M	Semi- Unc. m	minor Azimufh deg	Tool
_	0.000 300.000 640.000 3320.000 3600.000	0.000 0.000 34.000 40.000 85.000	0.0000 0.0000 54.0000 60.0000 90.0000	0.000 300.000 620.394 2760.464 2888.694	0.000 0.524 1.964 35.126 29.873	0.000 0.524 5.115 98.996 111.177	0.000 0.300 1.149 22.644 27.657	0.000 0.000 0.000 0.000 0.000	0.000 0.524 5.115 98.996 111.179	0.000 0.524 1.766 27.608 28.487	0.0000 0.0000 54.0000 59.8164 66.0264	TIE LINE good mag1 good mag1 good mag 2 good mag 2
	4000.000	90.000	80.0000	2906.181	35.159	152.994	35.159	0.000	153.008	29.166	69.3015	good mag 2

	Исходны	е данные		Данные р	асчета							Γ
MD	INC	AZI	TVD	Highside	Lateral	Vertical	SemiM	ajor	SemiMajor -v1	SemiMinor	Min. Azimut	2
300,000	0,000	0,000	300,000	0,524	0,524	0,300		0,524	0,524	0,524	90,000	
640,000	34,000	54,000	620,394	1,964	5,115	1,149		5,115	5,115	1,766	54,000	Г
3320,000	40,000	60,000	2760,464	35,126	98,996	22,644	9	8,996	98,996	27,608	59,816	Г
3600,000	85,000	90,000	2888,694	29,873	111,177	27,657	11	1,179	121,012	28,487	66,026	Г
4000,000	90,000	80,000	2906,181	35,159	152,994	35,159	15	3,008	155,603	29,167	69,301	
ovariance m	atrix								_			
(COVXX	COV	XY	COVXZ		COVYY		C	OVYZ	COVZZ	Name T	ool
	2,951		0,000		0,000		2,951		0,000	0,969	Good magnetiz	atio
	119,280		-117,950		-12,196		195,929		-8,861	14,219	Good magnetiz	atio
	32795,856		-42280,362		-5400,062	80	897,183		-3209,189	5519,168	Poor magnetiza	tio
	33315,631		-55277,595		-6803,154	133	044,280		-3911,239	8233,547	Poor magnetiza	tio
	40571,222		-83142.681		-8672.595	229	204.525		-4863.252	13305.719	Poor magnetiza	tio

3. При расчете магнитного склонения применяется скорректированная модель WMM2015v2.

Версию WMM15v2 ввели 28 сентября 2018г. (действует до конца 2019 г.) В основном корректировка для Арктики.

sample output fileV1.txt — Блокнот				🗐 WMM	v1.COF — Блокн	ют Вид Справка	_	ο×
Фейл Правка Формат Вид Спра Date Coord-System Altitude L 2019. M M0 56 77 11d 40m 2019. M 2	xxa atitude Longitude D_deg D 74d 44m 15562.6 152 80d 59m 9335.7 87 85d 11m 4899.2 39 87d 30m 2485.1 11 75d 15m 15559.7 15 82d 2m 8507.7 8 86d 53m 3235.4 3 88d 34m 14480.3	min I_deg I_min H_nT X_ 40.7 3149.0 56997.5 25.4 3319.9 58880.5 11.6 2949.9 58220.8 39.8 2208.3 56885.5 483.4 -1538.8 59122.3 471.3 -786.0 60750.9 221.0 305.1 59467.8 184.0 1418.4 57254.8	nT Y_nT 59083.9 59616.0 58426.6 56939.7 61135.5 61343.7 59555.8 57272.6	<u>Ф</u> аил Пр 2 015 1 0 1 1 2 0 2 1 2 2 3 0 3 1 3 2 2 2	авка Формат .0 -29438.5 -1501.1 -2445.3 3012.5 1676.6 1351.1 -2352.3 1225.6 594 0	Видправка WHM-2015 0.0 4796.2 0.0 -2845.6 -642.0 0.0 -115.3 245.0 255.0 255.0 0.0	10.7 17.9 -8.6 -3.3 2.4 3.1 -6.2 -0.4	12/15/2014 A 0.0 -26.8 0.0 -27.1 -13.3 0.0 8.4 -0.4 0.2
sample_output_fileV2.txt — Блокнот	ava			WMM.C	:OF — Блокнот	Run Copanya	-	
Date Coord-System Altitude L	atitude Longitude D_deg D	_min I_deg I_min H_nT X_	NT Y_NT	<u>ф</u> аил <u>П</u> ра 2015.	вка Фор <u>м</u> ат §	<u>Вид С</u> правка WMM-2015v2	8	9/18/2018
2019. M M0 56 77 11d 36m	74d 47m 15532.9 152	15.2 3125.3 57117.7	59192.0	10-	29438.2	0.0	7.0	0.0
2019. M M0 76 77 200 46m 2019 M M0 76 77 37d 5m	810 JM 9318.8 87 85d 13m 4886 4 38	13.1 3305.0 58983.3 98 b 29b6 0 583b1 b	59714.9 58545 7	11	-1493.5 -2666 E	4796.3	9.0 -11 0	-30.2
2019. M M0 86 77 63d 27m	87d 32m 2449.0 10	95.0 2190.6 57009.6	57062.1	21	3014.7 -	-2842.4	-6.2	-29.6
2019. M M0 56 107 -5d 54m	75d 14m 15596.5 15	513.8 -1603.8 59201.6	61221.(2 2	1679.0	-638.8	0.3	-17.3
2019. M M0 66 107 -5d 35m	82d 1m 8536.7 8	496.2 -830.4 60861.8	61457.(30	1351.8	0.0	2.4	0.0
2019. M M0 76 107 4d 39m	86d 54m 3227.4 3	216.8 261.6 59605.4	59692.7	3 1	-2351.6	-113.7	-5.7	6.5
2019.111000107 830350	880 38m 1374.5	153.7 1305.8 57379.0	57390.	32 33	1223.6 582.3	246.5 -537.4	2.0 -11.0	-⊎.8 -2.0 ∨
D deg D min								

11d 40m 11d 36m 20d 50m 20d 46m 37d 1m 37d 5m 40d 50m 63d 27m
-5d 41m -5d 54m -5d 41m -5d 54m -5d 18m -5d 35m 5d 25m 4d 39m 82d 37m 83d 35m

WMM2015v2 Release

The full release of the out-of-cycle WMM (WMM2015v2) is now available. All WMM products and services have been updated. This new model addresses the degraded performance of WMM2015 in the Arctic region and supersedes it.

Please contact geomag.models@noaa.gov for comments or questions.

4. В настройках отображения на вкладке «Геология» добавились данные водоносных пластов.

	Водо	носность					
	Доб	авить пласт	🔀 Быстри	ый ввод дан	ных Удал	ить	
	Инде	кс стратигра подразделе	фического ния	От (верт.), м	До (верт.), м	Плотность, кг/м3	
	AR			500	600	1000	
астройки отображения							
Обсадные колонны	ология Ком	иментарии С	тволы Объ	екты бурения	я (цели)		
Геологический пласт	Глубина по стволу, м	Глубина по вертикали, м	Мощность пласта, м	Цвет лини	й Заливи	а пласта	Настройки Графическое отображение
Вода-AR	504,302	500,000	100,000)			И Комментарий
Fas-C1vz bb	1716,273	1500,000	100,000				• комментарии
Галит	2090,893	1800,000	100,000	0			Размер шрифта 🛛 8 🚔
Used and DO alt of	2342.970	2000.000	100.000	D			

5. На вкладке «Контроль отклонения» в основной таблице и в таблице виртуальных замеров появился дополнительные столбцы «Простран. интенсивность» и «Угол отклонителя».

	🗗 Добави	ить замеры	🔒 Проект	ирование	Объекты б	бурения	🌕 🌄 O)тчёт
Инклинометрия	Табличны	е данные	Вертикальная	а проекция	Горизонта	льная проек	ция Трёх	мерно
Анализ отклонений	Тип контр О равено	оля отклої тво стволь	ния ных глубин	минимал	ьное рассто	яние между	замерами	0
стволов скважин			Исходнь	ый ствол				Анал
Анализ сближений стволов скважин	Глубина по стволу, м	Глубина п вертикали М	о Зенитный 1, угол, град	Азимут дирекц., град	Простран. интенсив., град/10 м	Угол отклонит., град	лубина по тволу, м	Глубі по верти
	2888,63	2704,0	0 13,67	288,50	0,82	192,03	2888,27	270
Направление азимута:	2913,58	2728,3	7 11,15	286,39	1,03	189,17	2913,18	272
дирекционный	2938,55	2752,9	1 10,08	287,02	0,43	174,12	2938,13	27
	2963,51	2777,5	i1 9,33	285,98	0,31	192,64	2963,09	27
Магнитное склонение:	2988,48	2802,2	.0 7,90	284,29	0,58	189,20	2988,07	28
17,35 град.	3013,46	2826,9	5 7,47	285,96	0,19	153,38	3013,09	28
	3032,32	2845,6	6,90	285,70	0,30	183,14	3032,00	284
Сближение меридиан: -1.16 град.	3052,01	2865,2	1 6,90	285,70	0,00	0,00	3050,08	286
	Виртуаль	ные замер	ы (F2)			(
💢 Закрыть	3000,00	2813,60	8,50	285,0	0,5	3 9,94	2999,6	1 2
	3050,00	2862,95	10,00	290,0	0,3	4 30,67	3049,7	3 2
	3100,00	2912,04	12,00	305,0	0,7	0 62,58	3050,0	8 2

6. На вкладке «Контроль отклонения» в основной таблице и в таблице виртуальных замеров появились дополнительные столбцы «Выше/Ниже (-)» и «Лево (-) /Право».

•	Грёхмерное	построение	Контроль о	тклонени	я Диагр	раммы из	менен	ия парам	иетров п	рофиля			
p	ами 🔿 пер	пендикулярн	ная плоскость	в Выбе	ерите ств	ол для ан	ализа	SIB+MW	/D_Desig	n #1	\sim		
_	Анализир	уемый ствол			Разница		Напра	авление		Рассто	ание м		^
a M	Глубина по вертикали, М	Зенитный угол, град	Азимут дирекц., град	верт. глубин, м	зенит., град	азимут., град	r	рад	3D	2D (гор.)	Выше /Ниже (-)	Лево (-) / Право	
9	2776,92	11,65	285,03	-0,59	-2,32	0,95		299,25	5,84	5,81	-0,59	-5,10	
7	2801,43	10,61	283,64	-0,76	-2,71	0,65		308,91	6,52	6,47	-0,76	-5,07	
9	2826,07	9,62	282,59	-0,89	-2,15	3,37		313,05	7,32	7,27	-0,89	-5,35	
0	2844,73	8,88	281,64	-0,94	-1,98	4,06		315,88	7,94	7,88	-0,94	-5,52	

Параметры «Y» и «X» (прямоугольные координаты параметров «Расстояние 3D» и «Направление») убраны с интерфейса. Вместо них рассчитываются параметры «Выше/Ниже (-)» и «Лево (-) /Право». Отчет формируется с учетом новых параметров.

7. В инклинометрии на вкладке «Трехмерное построение» появилась возможность перемещать фокус камеры по виртуальным замерам.

8. В настройках отображения на вкладках «Обсадные колонны», «Геология», «Комментарии» и «Объекты бурения» добавилась возможность задавать цвет фона в отчете Excel.

льсадные колоннь	Геология	Комментар	ии Ство	лы Объекты буре	ния (цели)	
Тип обсадной к	олонны	Глубина по стволу, м	Глубина вертикал	по Диаметр дол 10, м мм	тота, Диам ко	метр обсадной олонны, мм
оомежуточная		1500,00	13:	30,25	295,30	244,50 Комментарий Цвет линий Размер шрифта Цвет фона (отчёт Excel)
тройки отображе	ения					
тройки отображи Обсадные колонны	ения ы Геология	Комментар	ии Ствол	лы Объекты бурег	ния (цели)	
тройки отображи Эбсадные колонны Глубина по стволу, м ве 3600,00	ения и Геология лубина по ртикали, м 2899,68	Комментар Глубина вертикали (м	ии Ствол по оре), м 2739,09 Гл	лы Объекты бурен луб. ст3600,00; Зен	ния (цели) Коммента ит-85,00; Азі	арий Настройки Комментарий

Первоначально у всех сущностей задан желтый цвет. После закрытия модуля заданные пользователем цвета сохраняются в ini – файл.

												Дата:	26.03.2019			
							Отчёт по и	нклинометрии								
					Me	есторождение: Ф	едоровское, куст:	Проверка, скваж	ина: 1, ствол: 1 (с	ракт)						
						Глубина	забоя по стволу/в	ертикали: 4018,6	8 / 2906,18м.							
								-								
Система гео	одезин. пар	аметров (да	гум)			OK-42		Номер 6 градусн	ой зоны:			3				
Цилиндрин	еская проек	ация				Gauss-Kruge	r	Геомагнитная мо	дель			IGRF				
Геодезиче о	кие коорди	наты: широт	a °			63°6'11,211		Магнитное склон	ение, град			457				
Геодезиче о	кие координ	наты: долгот	a°			75°0'0,000"		Сближение мери	дианов, град			()			
Глобальные	координат	ы: смещени	е на север, м			7000000		Магнитное накло	нение (Inclination,	DipAngle), град		79,	178			
Глобальные	координат	ы: смещени	е на восток, н	н		500000		Общая напряжен	ность магн, поля :	земли (Total Field), nT		593	91,9			
Альтитуда,	м					160,59		Сумманая поправ	ака (MAG->GRID),	град		18,-	457			
Длина верт	икального у	частка, м				0		Направление ази	мута			GR	ID			
Извилистос	жилистось (Tortuosity), град					104,942		Индекс сложност	и бурения (DDI)			6,0	49			
Олещение в	здаль ствал	а скважины	(AHD), м			2353,03		Индекс удаленно	сти забоя от верт	икали (ERD ratio)		0,3	81			
Глубина по стволу; м	Зенитный угол, град	Азимут магнитный, град	Авимут GRID, град	Глубина по вертикали, м	Абсолютная отметка, м	Лок, смещение к северу; м	Лок, смещение к востоку, м	Отклонение от устыя, м	Азимут смещения, град	Пространст. интенсивность, град/10 м	Угол установки отклон, град	Интенсив. по зениту; град/10 м	Комментарий			
0	0	(0	0	160,59	0	0	0	0	0	0	0				
300	0	(0 0	300	-139,41	0	0	0	0	0	0	0				
504,3	20,43	35,543	54	500	-339,41	21,18	29,16	36,04	54	1	54	1	Вода-AR			
640	34	35,543	54	620,39	-459,8	57,58	79,25	97,95	54	1	54	1				
1000	34	35,543	54	918,85	-758,26	175,9	242,11	299,26	54	0	0	0				
1500	35,266	36,984	55,441	1330,25	-1169,66	339,96	474,1	583,39	54,356	0,03	33,475	0,025	Промежуточная-244,5 мм.			
1708,59	35,8	37,558	56,015	1500	-1339,41	408,23	574,28	704,59	54,593	0,03	33,475	0,025	Fas-C1 vz bb			
2080,74	36,757	38,547	57,004	1800	-1639,41	529,71	757,92	924,68	55,05	0,03	33,475	0,026	Галит			
2331,43	37,407	39,189	57,645	2000	-1839,41	611,31	885,16	1075,74	55,37	0,03	33,475	0,026	Нефть-D2 eif af			
3320	40	41,543	60	2771,45	-2610,86	930,93	1414,08	1693,01	56,642	0,03	33,475	0,026				
3600	85	71,543	90	2899,68	-2739,09	979,24	1647,47	1916,52	59,273	1,842	39,471	1,607	Глуб. ст3600,00; Зенит- 85.00: Азим90.00			
4018,68 93,222 62,308 80,765 2906,18 -2745,59			1012,91	2063,92	2299,08	63,86	0,295	311,523	0,196	Ствол - 4000						

9. В настройках «Графических данных» в 3D (Инклинометрия/Анализ) появилась возможность перемещать текст (комментарии).

Перемещение текста										
Метка										
TVD										
S/N										
W/E										
для выб кнопка і	ора метки - "Shift" и левая мыши,									

Для активации этой возможности необходимо поставить галочку «Перемещение текста» и с помощью левой клавиши «Shift» и левой кнопки мыши выбрать заданный текст на экране 3D. При выборе заданного текста в поле «Метка» отобразиться название выбранного текста. После этого с помощью 3-х ползунков можно задать необходимые координаты - ХҮZ.

До изменения:

10. В таблице виртуальных замеров появилось всплывающее меню, которое содержит следующие пункты:

- Скопировать введённые значения в буфер обмена.
- Расчет виртуальных замеров (дублирующая функция клавиша «F2»).
- Очистить все виртуальные замеры.

Виртуальные	замеры (F2)									
500,00	495,74	15,00	333,00		10,76	500,42	496,25	16,37	313,35	-1,37
600,00	592,11	16,00	328,00			500.00			3	-5,50
700,00	687,99	17,00	324,00		> Ско	мена 3	-4,50			
			·		Pac	чет виртуа	льных заме	ров	F2	
				×	Очі	истить все	виртуальнь	іе замеры		

11. В таблице «Проектирование» добавился столбец «Азимут (магнит)»

Проектирование v17.12													
😰 Вставить метод (Ins)													
Автоматический пересчёт данных инклинометии (при изменении пар													
Nº	Глубина по стволу, м	Длина участка, м	Зенитный угол, град	Азимут, град	Азимут (магнит), град	Вертикальная глубина, м	Be						
1	0,00	0,00	0,00	0,00	0,00	0,00							
2	300,00	300,00	0,00	0,00	0,00	300,00							
3	640,00	340,00	34,00	54,00	35,54	620,39							
- 4	1000,00	360,00	34,00	54,00	35,54	918,85							
5	3320,00	2320,00	40,00	67,00	48,54	2773,70							
6	3600,00	280,00	85,00	90,00	71,54	2901,00							
7	3998,76	398,76	93,56	52,70	34,25	2906,18							
8													

Чтобы добавить отображение этого столбца в таблице необходимо выполнить следующее:

- Поставить галочку в пункте «Азимут (магнит)».
- Активировать пункт «Перемещение колонок».
- Переместить в нужное положение столбец с помощью мыши (выбрав заголовок столбца с нажатой левой клавишей мыши).
- Сохранить параметры колонок.

	11 X C		1,00	54,00	1,00				
	Настроика таблицы		0,00	0,00	0,00				
	Перемещение колонок		0,04	57,85	0,03				
_			4.75	4.75 34.05 4.64					
¥=	Видимость колонок	~	Вертикальная глубина (море)						
	Сохранить параметры колонок	~	Лок. смещение к северу						
5		~	Лок. с	мещение к во	стоку				
	Загрузить параметры колонок по умолчанию	×	Азимут (магнит)						
			Глоб.	смещение на	север				
			Factor		POCTOR				

11. В инклинометрии на вкладках «Вертикальная проекция по азимуту» и «Горизонтальная проекция» появилось графическое отображение следующих сущностей:

- виртуальных замеров;
- анализируемого ствола;
- расстояние между исходным замером и анализируемым;
- расстояние между виртуальным замером и анализируемым.

Данные формируются на вкладке «Контроль отклонения».

街 Проектирование профиля / Анализ сближений v17.12 [ПРимер, скв. 12863, куст. 1117_Drill, Федоровское]

	🖗 Добавить замеры 🗐 Проектирование 🛛 Объекты бурения 🔂 Отчёт 😨 Настро										_
Инклинометрия	Табличные да	нные Вертик	альная проен	кция Горизо	нтальная про	екция Тр	ёхмерное п	остроение	Контроль о	тклонени	я Диагра
Анализ отклонений	Тип контроля О равенство	а отклония ствольных глу	бин 🖲 мин	имальное ра	сстояние меж	ду замерам	ии 🔿 перг	ендикулярн	ая плоскость	выбе	рите ство
стволов скважин		И	ходный ствол	1		Анализир	Разница				
Анализ сближений стволов скважин	Глубина по стволу, м	Глубина по вертикали, м	Зенитный угол, град	Азимут дирекц., град	Простран. интенсив., град/10 м	Глубина по стволу, м	Глубина по вертикали, М	Зенитный угол, град	Азимут дирекц., град	зенит., град	азимут., град
	0,00	0,00	0,00	0,00	0,00						
Направление азимута:	70,00	70,00	0,00	0,00	0,00	69,99	69,99	1,75	269,05	-1,75	-90,95
дирекционный	145,00	144,86	6,00	278,53	0,80	144,87	144,63	6,26	270,40	-0,26	8,13
	351,27	350,00	6,00	278,53	0,00	351,15	349,79	6,64	281,88	-0,64	-3,36
Магнитное склонение:	566,72	558,95	21,50	317,53	0,80	566,13	558,00	20,66	315,85	0,84	1,68
0,00 град.	772,06	750,00	21,50	317,53	0,00	771,57	750,23	21,57	320,06	-0,07	-2,53
	879,54	850,00	21,50	317,53	0,00	879,01	850,32	21,19	317,04	0,31	0,49
Сближение меридиан: -1 16 град.	1017,47	980,00	17,47	314,67	0,30	1016,96	980,24	18,53	321,85	-1,06	-7,18
1,101 page				1	(v			
¥ 3	Виртуальные	е замеры (F2)									
🐥 закрыть	2900,00	2605,26	85,00	1,00	1,27	2734,65	2558,21	21,63	291,12	63,3	7 -69,
	3000,00	2611,36	88,00	2,00	0,32	2752,38	2574,67	21,92	291,30	66,0	3 -70,

12. В всплывающем меню (таблица виртуальных замеров) появился пункт выбора типа ввода данных виртуальных замеров.

По умолчанию задание виртуальных замеров осуществляется с помощью следующих параметров:

- глубина по стволу;
- зенитный угол;
- азимутальный угол.

5015	, -	2020,0	- 1 1 -11	200,00	9,19	00,00	5015,05	2020,01	5,02	202,00	-4,10	الدرك		0,0,00	
3032	,32	2845,67	7 6,90	285,70	0,30	183,14	3032,00	2844,73	8,88	281,64	-1,98	4,06		315,88	1
3052	,01	2865,21	6,90	285,70	0,00	0,00	3050,08	2862,61	8,18	280,57	-1,28	5,13		317,23	1
						(v)		
Вирту	/альн	ные замерь	I (F2)												
3000),00	2813,60	8,50	285,0	0 0,53	9,94	2999,	61 2812,7	8 10,	15 283,	18 -1	,65	1,82	310,86	1
3050	,00	2862,95	10,00	290,0	0 0,34	30,67			c .	40 000		<u>^1</u>	9,41	301,54	1
3100	0.00	2912,04	12,00	305,0	0 0,70	62,58	B E Pa	асчет виртуа	2	24 43	297.68				
							Ti	ип ввода дан	ных		•	· 🖌 I	MD, In	ic, Azm	
						(🕞 0	копировать	MD, Inc, Azr	п в буфер о	бмена	N	VD, D	ogled, TFO)
							x 0	чистить все	виртуальнь	е замеры		ъект б	урени	ія (цель)	
	Исх	одный ство	л	Расст	ояние на цен	тр круга, м	1		зен	итныи угол,	град				i i

Добавилась возможность задавать виртуальные замеры с помощью следующих параметров:

- глубина по стволу;
- пространственная интенсивность;
- угол установки отклонителя.

3032,32	2845,67	6,90	285,70	0,30	183,14	3032,00	2844,73	8,88	281,64	-1,98	4,06		315,88	7,94
3052,01	2865,21	6,90	285,70	0,00	0,00	3050,08	2862,61	8,18	280,57	-1,28	5,13		317,23	8,65
					(~						
Виртуаль	ные замеры	(F2)												
3000,00	2813,60	8,50	285,00	0,53	9,94	2999,61	2812,78	10,1	15 283,1	8 -1,6	5	1,82	310,86	6,83
3050,00	2862,95	10,00	290,00	0,34	30,67	3049,73	2862,26	8,1	9,41	301,54	7,41			
3100,00	2912,04	12,00	305,00	0,70	62,58	3050,0	Расче	т виртуалы	43	297,68	50,32			
						- I	Тип в	зода данны	IX		•		MD, Inc,	Azm
					(🔒 Скопи	іровать MD), Inc, Azm в	буфер обг	иена	~	MD, Dog	gled, TFO
												-	a (devio)	
Ио	одный ство.	л	Рассто	яние на цен	пр круга, м		💥 Очист	ить все вир	отуальные за	амеры				Азиму
	3032,32 3052,01 Виртуаль 3000,00 3050,00 3100,00	3032,32 2845,67 3052,01 2865,21 Виртуальные замеры 3000,00 2813,60 3050,00 2862,95 3100,00 2912,04 Исходный ство.	3032,32 2845,67 6,90 3052,01 2865,21 6,90 Виртуальные замеры (F2) 3000,00 2813,60 8,50 3050,00 2862,95 10,00 3100,00 2912,04 12,00 Исходный ствол	3032,32 2845,67 6,90 285,70 3052,01 2865,21 6,90 285,70 Виртуальные замеры (F2) 3000,00 2813,60 8,50 285,00 3050,00 2862,95 10,00 290,00 3100,00 2912,04 12,00 305,00 Исходный ствол Рассто	3032,32 2845,67 6,90 285,70 0,30 3052,01 2865,21 6,90 285,70 0,00 Виртуальные замеры (F2) 3000,00 2813,60 8,50 285,00 0,53 3050,00 2862,95 10,00 290,00 0,34 3100,00 2912,04 12,00 305,00 0,70	ЗОЗ2,32 2845,67 6,90 285,70 0,30 183,14 ЗО52,01 2865,21 6,90 285,70 0,00 0,00 Виртуальные замеры (F2) 3000,00 2813,60 8,50 285,00 0,53 9,94 ЗО50,00 2862,95 10,00 290,00 0,34 30,67 З100,00 2912,04 12,00 305,00 0,70 62,58	ЗОЗ2,32 2845,67 6,90 285,70 0,30 183,14 3032,00 ЗО52,01 2865,21 6,90 285,70 0,00 0,00 3050,08 Виртуальные замеры (F2) ЗО00,00 2813,60 8,50 285,00 0,53 9,94 2999,61 ЗО5,00 2862,95 10,00 290,00 0,34 30,67 3049,73 З100,00 2912,04 12,00 305,00 0,70 62,58 3050,00	3032,32 2845,67 6,90 285,70 0,30 183,14 3032,00 2844,73 3052,01 2865,21 6,90 285,70 0,00 0,00 3050,08 2862,61 Виртуальные замеры (F2) 3000,00 2813,60 8,50 285,00 0,53 9,94 2999,61 2812,78 3050,00 2862,95 10,00 290,00 0,34 30,67 3049,73 2862,26 3100,00 2912,04 12,00 305,00 0,70 62,58 3050,0	3032,32 2845,67 6,90 285,70 0,30 183,14 3032,00 2844,73 8,88 3052,01 2865,21 6,90 285,70 0,00 0,00 3050,08 2862,61 8,18 Виртуальные замеры (F2) 3000,00 2813,60 8,50 285,00 0,53 9,94 2999,61 2812,78 10,7 305,00 2882,95 10,00 290,00 0,34 30,67 3049,73 2862,26 8,7 3100,00 2912,04 12,00 305,00 0,70 62,58 3050,0 Pacчет виртуально вода данны Исходный ствол Расстояние на центр круга, м	3032,32 2845,67 6,90 285,70 0,30 183,14 3032,00 2844,73 8,88 281,64 3052,01 2865,21 6,90 285,70 0,00 0,00 3050,08 2862,61 8,18 280,57 Виртуальные замеры (F2) С С С С С С 3000,00 2813,60 8,50 285,00 0,53 9,94 2999,61 2812,78 10,15 283,11 3050,00 2862,95 10,00 290,00 0,34 30,67 3049,73 2862,26 8,19 280,51 3100,00 2912,04 12,00 305,00 0,70 62,58 3050,0 P асчет виртуальных замеров Исходный ствол Расстояние на центр круга, м Скопировать MD, Inc, Azm в Синстить все виртуальные за	3032,32 2845,67 6,90 285,70 0,30 183,14 3032,00 2844,73 8,88 281,64 -1,98 3052,01 2865,21 6,90 285,70 0,00 0,00 3050,08 2862,61 8,18 280,57 -1,28 Виртуальные замеры (F2) 3000,00 2813,60 8,50 285,00 0,53 9,94 2999,61 2812,78 10,15 283,18 -1,6 3050,00 2862,95 10,00 290,00 0,34 30,67 3049,73 2862,26 8,19 280,59 1,8 3100,00 2912,04 12,00 305,00 0,70 62,58 3050,0 Image: Packet Buptyanetic Samepoid Tun BBoda gathics Tun BBoda gathics Tun Bboda gathics CkonupoBath MD, Inc, Azm B 6ydep of of Okucture Buptyanetic Bupt	3032,32 2845,67 6,90 285,70 0,30 183,14 3032,00 2844,73 8,88 281,64 -1,98 4,06 3052,01 2865,21 6,90 285,70 0,00 0,00 3050,08 2862,61 8,18 280,57 -1,28 5,13 Виртуальные замеры (F2) 3000,00 2813,60 8,50 285,00 0,53 9,94 2999,61 2812,78 10,15 283,18 -1,65 3050,00 2862,95 10,00 290,00 0,34 30,67 3049,73 2862,26 8,19 280,59 1,81 3100,00 2912,04 12,00 305,00 0,70 62,58 3050,0 Pacчет виртуальных замеров F2 Тип ввода данных Мсходный ствол Расстояние на центр круга, м	3032,32 2845,67 6,90 285,70 0,30 183,14 3032,00 2844,73 8,88 281,64 -1,98 4,06 3052,01 2865,21 6,90 285,70 0,00 0,00 3050,08 2862,61 8,18 280,57 -1,28 5,13 Виртуальные замеры (F2) 3000,00 2813,60 8,50 285,00 0,53 9,94 2999,61 281,78 10,15 283,18 -1,65 1,82 3050,00 2862,95 10,00 290,00 0,34 30,67 3049,73 2862,26 8,19 280,59 1,81 9,41 3100,00 2912,04 12,00 305,00 0,70 62,58 3050,0 Pacчет виртуальных замеров F2 43 Колировать MD, Inc, Azm в буфер обмена Исходный ствол Расстояние на центр круга, м К Очистить все виртуальные замеры К	3032,32 2845,67 6,90 285,70 0,30 183,14 3032,00 2844,73 8,88 281,64 -1,98 4,06 315,88 3052,01 2865,21 6,90 285,70 0,00 0,00 3050,08 2862,61 8,18 280,57 -1,28 5,13 317,23 Виртуальные замеры (F2) 3000,00 2813,60 8,50 285,00 0,53 9,94 2999,61 2812,78 10,15 283,18 -1,65 1,82 310,86 3050,00 2862,95 10,00 290,00 0,34 30,67 3049,73 2862,26 8,19 280,59 1,81 9,41 301,54 3100,00 2912,04 12,00 305,00 0,70 62,58 3050,0 Pacчет виртуальных замеров F2 43 297,68 Исходный ствол Расстояние на центр круга, м MD, Inc, Azm в буфер обмена MD, Inc, Azm в буфер обмена MD, Inc, Azm центр

13. В инклинометрии на вкладках «Вертикальная проекция ...» и «Горизонтальная проекция» появилась возможность изменять (уменьшать) размер границ отображения.

14. В графическом отображении («Проектирование») появились дополнительные вкладки с диаграммами «Расстояние между центрами» и «Расстояние между эллипсами».

15. В стандартный отчет по проектированию профиля добавилась закладка с отображением вертикальной проекции по заданному азимуту.

16. В анализ пересечений добавлен прибор «GYRO-GMS-ISGYRO-DP», описанный по модели ISCWSA.

(<u>دا</u> (SCWSA YRO-GN	IS-ISGYRO-DF	▼ … эл	оверхность ілипса	2	
-	Тос	ISCWSA GYI	RO-GMS-ISGY	RO-DP			
L		F	Property				Formula
	N≗	Code	Magnitude	Units	Depth	Inclination	Azimuth
	1	DRFR	0,35	m	1	0	0
1	2	DSFS	0,00024	-	MD	0	0
20	3	DSTS	2,2E-7	1/m	MD * TVD	0	0
2	4	SAG	0,2	deg	0	Sin(Inc)	0
41	5	XYM1	0,06	deg	0	Abs(Sin(Inc))	0
	6	XYM2	0,06	deg	0	0	-1
	7	ХҮМЗ	0,06	deg	0	Abs(Cos(Inc)) * Cos(AzT)	-(Abs(Cos(Inc)) * Sin(AzT)) / Sin(Inc)
	8	XYM4	0,06	deg	0	Abs(Cos(Inc)) * Sin(AzT)	(Abs(Cos(Inc)) * Cos(AzT)) / Sin(Inc)
	9	AXYZ-XYB	0,0004	-	0	Cos(Inc)	0
	10	AXYZ-ZB	0,0004	-	0	Sin(Inc)	0
	11	AXYZ-SF	0,0005	-	0	1,3*Sin(Inc)*Cos(Inc)	0
	12	AXYZ-MIS	0,06	deg	0	1	0
	13	GXYZ-GD	0,71	deg	0	0	MD/(900)
	14	EXTREF	0,3	deg	0	0	1

Одновременное нажатие «Ctrl+Alt+A» добавляет 15 приборов в справочник «Инструмент (инклинометрия)», включая 3 прибора для скважин, буримых с плавучих платформ.

17. В трехмерном построении («Проектирование») появилась возможность задавать прозрачность объектов бурения.

18. Появилась возможность сохранять трехмерное построенние (проектирование, анализ сближений) в макет.

	🚯 Добавить замеры 📓 Проектирование Объекты бурения 🏷 Отчёт	
Инклинометрия	Табличные данные Вертикальная проекция Горизонтальная проекция Трёхмерно	е пс
Анализ отклонений стволов скважин	Сохранить графические данные в Макет	
Анализ сближений стволов скважин		
Направление азимута: дирекционный	T1	

Выбор скважин	Анализ сближений	🏷 Отчёт	Анализ сближений ста
Табличные данные	Графические данные	Диаграмма сближени	й Опасные сближени
🛅 🗎 🕅 🖪	D 2Dh 2Dv Pol		Скважина/Ствол 🗌 С Расстояние 🗹 М
0 Сохранить	графические данные	в Макет	
300			
600			

Версия 19.12

Бурсофтпроект 2019

19. В трехмерном построении («Проектирование») появилась возможность отображать перпендикулярную плоскость (круг, радиус которого равен расстоянию 3D). Плоскость строится к заданному замеру исходного ствола, в ней откладывается направление вектора на рассчитанный замер анализируемого ствола.

Для этого необходимо на вкладке «Контроль отклонения» выбрать ствол для анализа. Потом, в настройках отображения включить галочку «отображение перпендикулярной плоскости».

Табличны	е данные В	ертикальная	я проекция	Горизонта	льная проек	ция Трёхмерное построение Контроль отклонения Диаграммы измен							ммы изменени	ния параметров профиля					
Тип контр О равено	ооля отклони ство ствольни	ия ых глубин	🖲 минимал	ьное рассто	яние между	замерами 🔿 перпендикулярная плоскость Выберите с						ите ствол для анализа 4-1 🛛 🛛							
		Исходні	ый ствол				Анализир	уемый ствол	1	Разница Направлени			Направление	е Расстояние, м				^	
Глубина по стволу, м	Глубина по вертикали, М	Зенитный угол, град	Азимут дирекц., град	Простран. интенсив., град/10 м	Угол отклонит., град	Глубина по стволу, м	Глубина по вертикали	Зенитный угол, град	Азимут дирекц., град	верт. глуби н, м	зени т., град	азиму т., град	град	3D	2D (rop.)	Y	х		
1300,00	1294,54	22,56	2,96	2,72	329,24	1294,71	1294,66	0,83	360,00	0,12	21,73	-2,96	256,47	40,05	40,05	-9,37	-38,94		
1310,00	1303,69	25,00	360,00	2,72	332,57	1303,92	1303,87	0,84	360,00	0,18	24,16	0,00	254,52	41,10	41,10	-10,97	-39,61		
1320,00	1312,76	25,00	360,00	0,00	0,00	1313,04	1313,00	0,85	360,00	0,24	24,15	0,00	249,60	42,47	42,47	-14,80	-39,81		
1330,00	1321,82	25,00	360,00	0,00	0,00	1322,17	1322,12	0,85	360,00	0,30	24,15	0,00	244,98	44,18	44,18	-18,68	-40,03		
1340,00	1330,88	25,00	360,00	0,00	0,00	1331,30	1331,25	0,86	360,00	0,36	24,14	0,00	240,68	46,18	46,18	-22,62	-40,27		
1350,00	1339,95	25,00	360,00	0,00	0,00	1340,43	1340,38	0,87	360,00	0,43	24,13	0,00	236,71	48,45	48,45	-26,59	-40,50	Y	

Настройки отображения

20. В методе «Дуга-Прямая-Дуга» появилась возможность рассчитать зенит и азимут входа относительно второй цели (аналог функций совместить зенит и азимут в объектах бурения).

Расчет зенитного угла входа на Т1 можно осуществить двумя методами:

N₽	Глубина по стволу, м	Длина участка, м	Зенитный угол, град	Азимут, град	Вертикальная глубина, м	Вертикальная глубина (море), м	Лок. смещение к северу, м	Лок. смещение к востоку, м	Отклонение от устья, м	Азимут смещени град
1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,
2	100,00	100,00	0,00	0,00	100,00	100,00	0,00	0,00	0,00	0,
3	346,96	246,96	24,70	40,40	339,38	339,38	39,90	33,97	52,40	40,
- 4	1926,95	1579,99	24,70	40,40	1774,87	1774,87	542,57	461,84	712,52	40,
5	2331,56	404,62	84,36	24,69	2000,00	2000,00	815,91	615,36	1021,95	37,
6	2535,16	203,60	84,36	24,69	2020,00	2020,00	1000,00	700,00	1220,66	34,
7										
<					-	-	-	-		

• между Т1-Т2 строится один участок стабилизации;

После добавления, вставки, удаления метода проектирования или редактировании параметров метода проектирования вь

Ј-профиль S - профиль Пространственная кривая Плоская дуга на точку Плоская дуга на направление Участок стаб

		Направление касательной	<u>в конечной точ</u> ке
Пространственная интенсивность 1: 1,000 2:	1,500	Зенитный угол, град:	84,36
○ Глубина по вертикали 1: 339,38 2:	1774,86	Азимутальный угол, град:	24,69
ОДлина участка стабилизации: ☐ баланс интенсивн.	1579,99	Совместить зенит и азимут выбранной цели:	относительно
○ Глубина по стволу	2331,56	12	
Обратное проектирование		🗹 стабилизация 🗌 ду	га-прямая

Расчет зенитного угла входа в Т1 осуществляется по следующей схеме:

После расчета можно добавить участок стабилизации до вертикальной глубины Т2.

После Ј-про	филь 5	5 - профиль	Простра	анственная к	кривая Плоска	ая дуга на точку	у Плоская <i>ј</i>	дуга на напра	авлен
После					THE REPORT OF THE PARTY	PITTER THE TRACK PITTER			
<									
7									
6	2535,16	203,60	84,36	24,69	2020,00	2020,00	1000,00	700,00	1
	2331,56	404,62	84,36	24,69	2000,00	2000,00	815,91	615,36	1

Версия 19.12

 между Т1-Т2 строится дуга (по умолчанию интенсивность равна 1 град/10м.) с выходом на зенит 90 градусов и стабилизация.

Nº	Глубина по стволу, м	Длина участка, м	Зенитный угол, град	Азимут, град	Вертикальная глубина, м	Вертикальная глубина (море), м	Лок. смещение к северу, м	Лок. смещение к востоку, м	Отклонение от устья, м	Азимут смещени град	
1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,	
2	100,00	100,00	0,00	0,00	100,00	100,00	0,00	0,00	0,00	0,	
3	346,96	246,96	24,70	40,40	339,38	339,38	39,90	33,97	52,40	40,	
- 4	1926,95	1579,99	24.70	40.40	1774,87	1774,87	542,57	461,84	712,52	40,	
5	2331,56	404,62	71,38	24,69	2000,00	2000,00	815,91	615,36	1021,95	37,	
6	2455,71	124,15	90,00	24,69	2020,00	2020,00	926,73	666,31	1141,41	35,	
- 7	2536,35	80,64	90,00	24,69	2020,00	2020,00	1000,00	700,00	1220,66	34,	
8											
<	<										
Пос	После добавления, вставки, удаления метода проектирования или редактировании параметров метода проектирования вы										
J-n	рофиль !	5 - профи	ль Простр	ранственн	ая кривая Пл	оская дуга на точ	чку Плоска	ая дуга на наг	правление У	насток ста	
							Направле	ние касателы	ной в конечно	й точке	
Пространственная интенсивность 1: 1,000 2: 1,500 Зенитный угол, град: 71,38									,38		
Глубина по вертикали 1: 339,38 2: 1774,86 Азимутальный угол, град; 24,69									4,69		
Одлина участка стабилизации: Саланс интенсивн. 1579,99 Совместить зенит и азимут относительно выбранной цели:									льно		
	O Глубина по стволу 2331,56 T2									- 5	
Обратное проектирование						🗌 стабилизация 🗹 дуга-прямая					

Расчет зенитного угла входа в Т1 осуществляется по следующей схеме:

T1 <u>(Zen = 71.4)</u> DLS3	
	7
	T2 (ZenEnd = 90)

По умолчанию интенсивность по зениту равна 1 град/10м. Если введено значение «Пространственная интенсивность 2:», то интенсивность дуги берется оттуда.

В результате расчета может возникнуть ситуация, когда невозможно выполнить расчет с заданными интенсивностями, тогда программа сама будет подбирать эти значения.

Вертикаль второй цели должна быть больше или равна (стабилизация — угол входа 90 градусов), вертикали первой цели.

После расчета можно добавить «Ј-профиль» до Т2.

21. При расчете магнитного склонения применяются обновленные модели WMM2020 и IGRF13.

В конце декабря 2019 г. были опубликованы самые последние модели IGRF-13 и WMM2020, которые будут действительны на следующее пятилетие.

Business Meetings Minutes IAGA Resolutions IGRF-13 Repeat Stations

13th Generation IGRF - Released December 2019

The International Association of Geomagnetism and Aeronomy (IAGA) released the 13th Generation International Geomagnetic Reference Field – the latest version of a standard mathematical description of the Earth's main magnetic field and used widely in studies of the Earth's deep interior, its crust and its ionosphere and magnetosphere. The coefficients for this degree and order 13 main field model were finalized by a task force of IAGA in December 2019. The IGRF is the product of a collaborative effort between magnetic field modellers and the institutes involved in collecting and disseminating magnetic field data from satellites and from observatories and surveys around the world. Before using the IGRF please look at the "<u>Health Warning</u>".

The World Magnetic Model

The World Magnetic Model is a joint product of the United States' National Geospatial-Intelligence Agency (NGA) and the United Kingdom's Defence Geographic Centre (DGC). The WMM was developed jointly by the National Centers for Environmental Information (NCEI, Boulder CO, USA) (formerly National Geophysical Data Center (NGDC)) and the British Geological Survey (BGS, Edinburgh, Scotland).

The World Magnetic Model is the standard model used by the U.S. Department of Defense, the U.K. Ministry of Defence, the North Atlantic Treaty Organization (NATO) and the International Hydrographic Organization (IHO), for navigation, attitude and heading referencing systems using the geomagnetic field. It is also used widely in civilian navigation and heading systems. The model, associated software, and documentation are distributed by NCEI on behalf of NGA. The model is produced at 5-year intervals, with the current model expiring on December 31, 2024.

World Magnetic Model News

12/10/2019: WMM2020 Release

The full release of the WMM (WMM2020) is now available. All WMM products and services have been updated.

Система геодезических параметров (датум)	СК-42 🗸	Дата 23.12.2024 🗸								
Цилиндрическая проекция	s-Kruger 🗸 🗸	Номер б град. зоны 🛛 🗹 Расчёт зоны								
Геомагнитная модель	WMM ~	уточнённое эталонное геомагнитное поле								
модель описывает период: от 01.01.1985 до 31.12.2024										
Координаты										
💿 Широта, град	63,10311412	Долгота, град	75 📄							
О Смещение на север, м	6999999,9997	Смещение на восток, м	500000,0000							
		Высота, м	0,0000							
-World Magnetic Model	World Magnetic Model (WMM)									
Declination, °	18° 16' 52''	Inclination, °	79° 34' 29''							
Horizontal Intensity, nT	10836,4	DH, nT/год	-48,8							
North Component, nT	10289,4	DX, nT/год	-46,1							
East Component, nT	3399,1	DY, nT/год	-16,2							
Vertical Component, nT	58895,9	DZ, nT/год	71,4							
Total Field, nT	59884,5	DF, nT/год	61,4							
Поправки для расчёта истинного (географического) азимута, град										
Иагнитное склонение	18,28108	Сближение меридианов	0,0000							