Проектирование профиля / Анализ пересечений (V20.1)

Шаблон Куста (V20.1)

1. В анализе сближений (отклонений) добавилось отображение проекций эллипсоида неопределенности.

Для этого необходимо провести анализ, на вкладке «Графические данные» выбрать «3D» и в настройках поставить соответствующие галочки.

3_11		109;9
"	///////////////////////////////////////	
	Перемещение текста Метка TVD S/N W/E для выбора метки - "Shift" и ле кнопка мыши,	СЛ СЛ
	 Проекции эллипсоид перпендикулярная с учетом касатель горизонтальная Прозрачность 	ных

По умолчанию отображается перпендикулярная проекция эллипсоида неопределенности к направлению бурения. Также можно дополнительно отобразить горизонтальную проекцию эллипсоида неопределенности. Можно задать степень прозрачности этих плоскостей. Дополнительно можно отобразить к перпендикулярной проекции «гантель» (аналог в Compass «pedal curve») на основе которой ведет расчет фактора сближений.

При пересечении этих плоскостей фактор сближения меньше 1.

2. Добавилось возможность задавать комментарий через справочник.

Контро	Контроль положения забоя 🗌 Объекты бурения и зона контакта 🔲 Поправки											
Тространств. интенсив., град/10 м	Угол установки отклон., град	Интенсив. по зениту, град/10 м	Интенсив. по азимуту, град/10 м	Индекс сложности бурения	Тип участка	Комментарий						
0,000	0,00	0,000	0,000	0,00	TIE LINE							
0,000	0,00	0,000	0,000	0,00	STRAIGHT_TVD							
0,936	265,57	0,936	0,000	4,53	SLANT	✓						
0,000	0,00	0,000	0,000	5,72	SLANT	Окно						
					INSERT LINE	Фрезерование Срезка						
						Голова хвостовика Верх ГНО Низ ГНО Керн верх Керн низ						
		Сохране	ние текущего Вы хотите со	замера охранить теку	щий замер?	×						

?	Вы хотите сохранить текущий замер?								
-	Параметры								
	Глубина по стволу, м	1921,44							
	Зенитный угол, град	47,77							
	Азимут (истн.), град	265,57							
	Глубина по вертикали, м	1500,00							
	Глубина по вертикали (море), м	1365,00							
	Смещение на север, м	-78,98							
	Смещение на восток,м	-1020,38							
	Пространст. интенсивность, град /10м	0,000							

3. В настройках отображения все изменения сохраняются после нажатия кнопки «Сохранить».

бсадные коло	нны Геология	Комментарии Ст	золы Объекты бурения (цели)		
Глубина по стволу, м	Глубина по вертикали, м	Глубина по вертикали (море), м	Комментарий	^	Настройки ПКомментарий
500,00	496,46	361,46	md		
600,00	588,13	453,13	md1		цветлинии
810,39	753,28	618,28	Срезка		Размер шрифта 🛛 🖁
1046,55	912,00	777,00	a	_	Цвет фона 🔍 🗸
1177,49	1000,00	865,00	tv		(отчёт Excel)
1211,71	1023,00	888,00	a2		Лля удаления комментария
				- ¥	нажмите клавишу "Del"

Версия 20.1

4. Добавилась возможность сохранять в файл и загружать виртуальные замеры из файла. В папке «Templates» создается файл «VirtZam.bin».

Γ	Виртуальные заме	еры (F2)						
	1000,00	20,00	5,00	964,15		22,55	105,47	999,93
	1300,00	25,00	25,00	1241,63				4075 30
Sure	1450,00	35,00	30,00	1371,39		Расчет вирту	альных замеров	F2
Γ	· · · · · ·				* =	Тип ввода дан	нных	• [
🕞 Скопировать М						MD, Inc, Azm в буф	ер обмена	
					s.	Загрузить да	нные из файла	
						Сохранить да	анные в файл	
					×	Очистить все	е виртуальные замер	ры

5. При проектировании в графическом отображении на горизонтальной проекции появилась возможность копировать координаты ХҮ на форму проектирования.

Для этого на горизонтальной проекции необходимо сделать двойной клик левой клавиши мыши. В этом месте нарисуется перекрестье и кнопка «копирования» станет активной. При нажатии на эту кнопку координаты ХҮ скопируются в соответствующие ячейки (имя цели – «Цель отсутствует»).

билизации Дуга-Прямая-Ду	га	
Координаты цели: Глубина по вертикали, м:	2799,98 📳	
E	🛛 Локальные	🗌 Глобальные
Смещение на север, м:	-161,00	7457350,94
Смещение на восток, м:	-2461,00	484053,89
Имя цели: Цель отсутст	вует	
	1	
Показать анализируем	ые стволы	Метки в 2Dh 🗹 Фон отображения в 2D
		Смещение на север: -103,93 м. Смещение на восток: -2422,73 м.
		Копировать координаты в расчет

Координаты цели: Глубина по вертикали, м:	2799,98 冒	
E	🗸 Локальные	🗌 Глобальные
Смещение на север, м:	-103,93	7457408,01
Смещение на восток, м:	-2422,73	484092,16
Имя цели: Цель отсутст	вует	V

После копирования координат необходимо на форме проектирования выполнить расчет профиля.

Плоская дуга на направление Участок стаб	илизации Дуга-Прямая-Дуга
Направление касательной в конечной точке Ненитный угол, град: 80,00	Координаты цели: Глубина по вертикали, м: 2799,98 🗐
азимутальный угол, град: 300,00 Совместить зенит и азимут относительно выбранной цели: Цель отсутствует	Локальные Глобальные Смещение на север, м: -103,93 7457408,01 Смещение на восток, м -2422,73 484092,16
∑ стабилизация Дуга-прямая эжение h 2Dv DC DE FS Pol Показать а	анализируемые стволы Метки в 2Dh Фон отображения в 2I Смещение на север: -1
	Смещение на восток:-

6. В настройках отчета по профилю появилась возможность задать глубину, с которой будет начинаться интерполяция.

Отчёт	×
Инклинометрия	
Интерполяция по стволу профиля Шаг интерполяции, м Вывод интервала профиля от, м	10 от, м 3400 ✓ замеры 0 до, м 3873,9806852
	🖲 по стволу 🔵 по вертикали
Добавить в общий отчет ПОбсадные колонны	Дополнительные таблицы П Обсадные колонны

6. В проектировании профиля появилась возможность задать цветовую заливку каждому методу.

570,5	5 -17,04	-167,36	168,23	264,19		1,000	264,19	1,000	5,863	
24		Настройка таб	Samuel		1	0,000	0,00	0,000	0,000	
26		Пастройка нас	ынцы			1 000	52 56	0.751	0 770	
	Цвета метод	цов		•		Ј-профиль	o (custo	m)	-	
	Перемещен	ие колонок				S-профили	ь (custo	om)	-	
_	-					Простр. кр	оивая (о	custom)	-	
\$	Видимость н	колонок		•		Плоская д	уга на точку	(cus	tom) 🗸	
	Сохранить г	параметры кол	юнок			Плоская д	уга на направ	вление	(custoi 🗸	
B	Загрузить п	араметры коло	онок по умол	чанию		Стабилиза	ция (с	ustom)	-	
		- F F	,,			Дуга-Прям	иая-Дуга	(custom	n) -	
						Обратное	проектирова	ние	(custom) -	
						Цвета по у	молчанию			

При задании цвета меняется заливка столбцов «№» и «Тип участка»

Азимут смещения, град	Пространств. интенсив., град/10 м	Угол установки отклон., град	Интенсив. по зениту, град/10 м	Интенсив. по азимуту, град/10 м	Ин слож бур	декс сности ения	Тип участка	Комментарий		
0,00	0,000	0,00	0,000	0,000		0,00	TIE LINE			
0,00	0,000	0,00	0,000	0,000		0,00	STRAIGHT_TVD			
264,19	1,000	264,19	1,000	5,863		4,42	OPT_AL_DLS			
264 ***	0.000			0.000	5	5,60	OPT_AL_DLS			
267		Настроика та	олицы			6,01	OPT_AL_DLS			
	Цвета мето,	дов		•	•	J-nj	рофиль	(custom)	-	
	Перемещен	ние колонок				S-профиль (custom)				
¥	Видимость	колонок		,	•	Про Пло	остр. кривая 📗 оская дуга на т	(custom) очку (custom)	•	
	Сохранить і	параметры ко	лонок			Пло	оская дуга на н	аправление (cust	oi -	
₽°	Загрузить п	араметры кол	онок по ум	олчанию		Ста	билизация	(custom)	-	
						Дуг	а-Прямая-Дуг	a Yellow	-	
						06	ратное проекти	ирование (custom) -	
						Цве	та по умолчан	ию		

Цвета можно использовать стандартные из набора (выпадающий список) или задать самому на панели «Цвет» (кнопка «...»)

7. При формировании отчета в Excel к названиям вкладок дописывается название скважины.

В	С	D	F	G	Н	I	J	K	L	N		
<u> </u>												
Отчёт по инклинометрии												
Месторождение: Field, куст: Block скважина: well 10 ствол: S-1452												
	Интервал анализа по стволу: от 0 м. до 3873,98 м. (шаг интерполяции 10 м.)											
Система ге	еодезич. па	араметров (д	цатум)			CK-42		Номер 6 градус	ной зоны:			
Цилиндри	ческая про	екция				Gauss-Kruge	r	Геомагнитная м	одель			
🕨 well 10_Инклинометрия well 10_Интерполяция / 3D визуализация / Горизонтальная проекция / Вертикаль										Вертикальна		
o 🚹												

8. В расчет глобальных координат добавились новые местные системы (МСК.***).

Система геодезич параметров (дату	м) МГС-84	Дата 28.10.2020 🗸
Цилиндрическая проекция	UTM ~	Номер б З9 🗹 Расчёт зоні
Геомагнитная модель модель описывае	UTM Gauss-Kruger Локальные системы МСК02 - зона 1 МСК02 - зона 1	 уточнённое эталонное геомагнитное поле 2.2024
Координаты	МСК16 - зона 1	
🖲 Широта, гр	МСК16 - зона 2 МСК16 - зона 3	ігота, град 53,45861278 🗐
Смещение север, м	МСК23 - зона 1 МСК23 - зона 2	ещение 692031,0866 восток, м
	МСК38 - зона 2 МСК38 - зона 3	ота, м 0,0000
World Magnetic I	МСК38 - зона 4 МСК42 - зона 1 МСК42 - зона 2	

9. В отчете по анализу пересечений(Excel) добавилась информация о принадлежности к кусту.

	Отчёт по сближению стволов скважин														
Мест	орождение	: Федоровское	, куст: 1117_Dr	ill, скважина: 5698_4	56, ствол: SIB+MWD	_Design #2									
	Список скважин/стволов участвующих в анализе														
	Список скважин/стволов участвующих в анализе														
Куст	Скважина Ствол Тип ствола Тип инструмента Название инструмента Начало пр														
1117_Drill	5698_456	SIB+MWD_De sign #2	исходный	ISCWSA	PoorMag ISCWSA Edit	от устья									
9	882	BS_1_IGN+ION	анализируемый	систематическая погрешность (W&dW)	Poor magnetization	от устья									
9	882	IGN	анализируемый	систематическая погрешность (W&dW)	Poor magnetization	от устья									
9 9	882 882	IGN KIT	анализируемый анализируемый	систематическая погрешность (W&dW) систематическая погрешность (W&dW)	Poor magnetization Poor magnetization	от устья от устья									
9 9	882 882	IGN KIT	анализируемый анализируемый	систематическая погрешность (W&dW) систематическая погрешность (W&dW)	Poor magnetization Poor magnetization	от устья от устья									
9	882 882	IGN KIT	анализируемый анализируемый	систематическая погрешность (W&dW) систематическая погрешность (W&dW)	Poor magnetization Poor magnetization	от устья от устья									
9	882	IGN KIT	анализируемый анализируемый	систематическая погрешность (W&dW) систематическая погрешность (W&dW)	Poor magnetization Poor magnetization	от устья от устья									

	Опасные с	ближения				A	(усты: 1117 <u>-</u>	_Drill - 9; Cra	зажины: 5698_456	IB+MWD_Design #2	2 - IGN			
Исходная	скважина	Анализируе	мая скважина	Большая	полуось		Координат ск	ты анализ. в.				R,	м	
глубина по стволу, м	глубина по вертикали, м	глубина по стволу, м	глубина по вертикали, м	исх. скважина	анализ. скважина	Направ- ление, град	север, м	восток, м	Мин. расстояние в пространстве, м	Мин. расстояние в гориз. плоскости, м	Мин. расстояние в пространстве с учетом ошибок, м	исх. скважина	анализ. скважина	Фактор сближения
						Опасні	ые сближе	ния отсут	ствуют					

10. В горизонтальной и вертикальной проекциях добавилась возможность задавать параметры осей.

11. В методе проектирования «Дуга-Прямая-Дуга» появилась возможность до проектировать на другой ствол текущей скважины (Возвращение на ствол).

Выбираем необходимый ствол (куда нужно вернуться), задаем глубину по стволу этого ствола и задаем параметры метода. После расчета данная функция на рассчитанных данных скрывается.

338 339	1700,00	5,00	25,58	806,78	1626,80	1545,42	217,58	-275,63	351,	,16 308,	29 0,3	85 350,96	0,380	-0,140	4,9 INC_AZ	LINE	
<																	
Посл	е добавлен	ния, вставк	и, удаления	метода пр	роектирован	ия или редакти	ровании па	раметров ме	тода проек	тирования вь	полните "Расч	ēτ"					🗍 Расчёт (F2
Ј-про	профиль S-профиль Пространственная кривая Плоская дуга на точку Плоская дуга на направление Участок стабилизации Дуга-Прямая-Дуга																
0	Пространственная интенсивность 1: 2: Возвращение на ствол Зенитный угол, град: Глубина по вертикали, м: Возвращение на ствол Выберите ствол ION V																
0	Глубина п	ю вертика	ли	1:	2:		Азимуталь	ьный угол, гр	ад:			🖂 Ла	кальные	Глобальные	Глубина по ств	олу, м:	2000,00
0	- Длина уча	астка стаби	ілизации:	баланс и	интенсивн.		Совмести выбранно	ть зенит и аз ой цели:	имут относи	ительно	Смещение на	север, м:			Добавить	замеры и	сх. ствола
0	плуоина п	юстволу					Цель отсутствует										Возврат
0	братное п	роектиро	вание				🗹 стаби	илизация [дуга-прям	кая	Имя цели:	Цель отсутствует		<u>~</u> 🔞			
220	1700.00	5.00	25.50	200 70	400	1000	545 42	217.50	275.62	201.10	200.20	0.205	250.00	0.200	0.140		INC 171 115
339	1865,50	165,50	55,00	14,66	5 175	57,08 1	675,70	310,38	-287,87	423,33	317,15	2,986	87,69	1,778	-6,775	5,3	OPT_AL_TL
340	2026,54	161,04	62,89	305,79	9 184	17,95 1	766,57	426,32	-333,32	541,16	321,98	3,625	257,16	0,490	6,901	5,6	OPT_AL_TL
341																	INSERT LINE

Если поставить галочку «добавить замеры исх. ствола», то к расчетным данным скопируются все замеры исходного ствола, глубина которых больше, чем у точки возврата.

	1000 00	105.50			1777.00	4 6 7 6 7 6	240.20	207.07	100.00	242.45	2.000	07.00	4 770	6 776		
339	1865,50	165,50	55,00	14,66	1757,08	1675,70	310,38	-287,87	425,55	317,15	2,986	87,69	1,778	-6,775	5,5	OPI_AL_IL
340	2026,54	161,04	62,89	305,79	1847,95	1766,57	426,32	-333,32	541,16	321,98	3,625	257,16	0,490	6,901	5,6	OPT_AL_TL
41	2031,54	5,00	63,56	305,57	1850,21	1768,83	428,92	-336,95	545,45	321,85	1,396	343,61	1,340	-0,440	5,6	INC_AZI_MD
42	2036,54	5,00	64,13	305,53	1852,41	1771,03	431,53	-340,60	549,75	321,72	1,142	356,39	1,140	-0,080	5,6	INC_AZI_MD
43	2041,54	5,00	64,47	305,58	1854,58	1773,20	434,15	-344,27	554,08	321,59	0,686	7,56	0,680	0,100	5,6	INC_AZI_MD
44	2046,54	5,00	64,64	305,80	1856,73	1775,35	436,79	-347,93	558,43	321,46	0,523	49,49	0,340	0,440	5,6	INC_AZI_MD
45	2051,54	5,00	65,45	306,63	1858,84	1777,46	439,47	-351,59	562,80	321,34	2,211	43,07	1,620	1,660	5,6	INC_AZI_MD
46	2056,54	5,00	66,20	307,57	1860,88	1779,50	442,22	-355,23	567,22	321,23	2,279	49,02	1,500	1,880	5,6	INC_AZI_MD
47	2061,54	5,00	66,93	308,48	1862,87	1781,49	445,04	-358,84	571,69	321,12	2,218	49,02	1,460	1,820	5,6	INC_AZI_MD
48	2066,54	5,00	67,42	308,94	1864,81	1783,43	447,93	-362,44	576,19	321,02	1,296	40,96	0,980	0,920	5,6	INC_AZI_MD

Версия 20.2

12. В методе проектирования «Тангенциальный метод» появилась возможность проектировать профиль при начальном зенитном угле больше 90 градусов.

🔳 Проектиро	вание v20.2														-	□ ×
🔄 Вставить м	иетод (Ins)	上 Удал	ить мет	од (Del) 💢 С	чистить	Отменить	📕 Сохранить	вернут	ь Разбить и	метод Граф	ическое отобр	ажение	Нап	равление а	азимута: дир	рекционный
Автоматиче	ский пересч	ёт данны:	х инклин	нометии (при и	зменении пара	метров мето	ода проектиро	вания) 🗌 Ко	онтроль поло	жения забоя	Объекты б	урения и зо	на контакта	Попра	вки	
№ Глубина по у стволу, м	Длина Зен участка, уго. м	итный А л, град	Азимут, град	Вертикальная глубина, м	Вертикальная глубина (море), м	Лок. смещение к северу, м	Лок. смещение к востоку, м	Отклонение от устья, м	Азимут смещения, град	Пространств. интенсив., град/10 м	Угол установки отклон., град	Интенсив. по зениту, град/10 м	Интенсив. по азимуту, град/10 м	Индекс сложности бурения	Тип участка	Комментари
1 0.00	0.00	0.00	0.00	0.00	-43.23	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.00	TIE LINE	
2 405.21	405.2	0.00	0.00	405.21	361.98	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.00	SLANT	
3 1344.73	939.52	90.50	90.00	1000.00	956.77	0.00	600.00	600.00	90.00	0.963	90.00	0.963	0.958	5.38	SLANT	
4 1560.55	215.82	90.50	90.00	998.12	954.89	0.00	815.81	815.81	90.00	0.000	0.00	0.000	0.000	5.58	SLANT	_
6 1945 39	345.20	86.54	90.00	1020.00	955.91	0.00	1200.00	1200.00	90.00	0.000	180.00	-1.000	0.000	5.95	SLANT	
7	545.20	00.34	50,00	1020.00	510.11	0.00	1200.00	1200,00	50.00	0.000	0.00	0.000	0.000	5.05	INSERT LINE	
															HIJERT ENTE	
<																>
После добавле	ния, вставки -профиль Г	і, удалени Простран	ія метод іственна	а проектирова я кривая Пло	ния или редакти ская дуга на точ	ировании па ку Плоска	араметров мет 19 дуга на напр	ода проектир авление Уча	ования выпо асток стабили	лните "Расчёт ізации Дуга-	Трямая-Дуга				P	асчёт (F2)
J-профиль S-профиль Пространственная кривая Плоская дуга на точку Плоская дуга на направление Участок стабилизации Дуга-Прямая-Дуга																
Длина 1-учас	Зафиксируйте любые два параметра Координаты цели: Ланна Јауастка стабилизации м: 215.82 риссо изгори Глибина по велтикали м: 1020.00 🗐 Олуга (интенцияность)-повмая															
Пространств	енная интен	сивность		1.000	San Spins	От	клонение, м:		600.0	О Смещен	ие на север, м		0.00	прямая-дуг	а (интенсивно	сть)
град/ юм: Зенитный уго	ол в конце п	рофиля г	грал:	86.54 🗸		A3	имут отклонен	ия грал:	90.0	10 Смашан		r 120		дуга (до вер	отикали)-прям	ая
	an o konge nj			245.20					201	Смещен	vie na bocrok, i	n. 125	Глу	бина по ве	ртикали, м:	999.14
длина 2-учас	тка стабилиз	зации, м:		545.20		Им	ия цели: Це	ель отсутствуе	F	× 🗹			۲	прямая-дуг	а (интен.)-пря	мая (зенит)
															_	_
16 3203.29	65.00	90.50	335.01	2427.99	2370.28	250.32	-1304.60	1328.40	280.86	1.000	0.10	1.000	0.002	6.02	INC_AZI_DLS	
17 3253.29	50.00	90.50	335.01	2427.55	2369.84	295.64	-1325.73	1358.29	282.57	0.000	0.00	0.000	0.000	6.04	STRAIGHT_MD	
18 3874.80	621.51	90.50	335.01	2422.13	2364.42	858.95	-1588.26	1805.65	298.41	0.000	0.00	0.000	0.000	6.24	SLANT	
19 3979.82	105.01	80.00	334.83	2430.81	2373.10	953.61	-1632.56	1890.67	300.29	1.000	180.98	-1.000	-0.017	6.30	SLANT	
20															INSERT LINE	
<																>
После добавлен	ния, вставки,	удалени:	я метода	проектирован	ия или редакти	ровании па	раметров мето	ода проектиро	вания выпол	ните "Расчёт"					冒 Pa	счёт (F2)
Ј-профиль S-	профиль Г	Іространо	ственная	кривая Плос	кая дуга на точн	ку Плоска	я дуга на напра	авление Уча	сток стабилиз	зации Дуга-Г	рямая-Дуга					
Зафиксируйт	е любые два	парамет	ра			Кос	рдинаты цели:							ангенциалы	ный метод	
Длина 1-участ	тка стабилиз	ации, м:		621.51	выход на г	цель Глу	бина по верти	кали, м:	2430.81	Ĩ			0	дуга (интенс	ивность)-прям	ая
Пространстве	енная интен	сивность		1 000	and a state of the				775.0					прямая-дуга	интенсивнос	ты
град/10м:				1.000		On	огонение, м:		726.0	Смещен	е на север, м:	953			тикали)-прома	
Зенитный уго	л в конце пр	офиля, г	рад:	80.00		Asu	імут отклонени	ия, град:	0.0	О Смещени	е на восток, м	-1632	2.56	ала до вер	опсалиј-пряма	422 13
Длина 2-участ	тка стабилиз	ации, м:		0.00		Им	я цели: ТЗ			~ 🔞			Глуе	оина по вер	тикали, м: 2	ая (зенит)
														приная-дуга	циптенартрам	ая (эснит)

13. В отчете по анализу пересечений (Word) добавилась информация о принадлежности к кусту, а в таблицах минимальных сближений появился параметр — «абсолютная отметка».

Г					Сп	Список скважин/стволов участвующих в а								
I	Куст		Скважина	Ств	ол	Т	ип ствола	Тип инст	румента					
	1		33	пилот		исх	одный	систематиче	еская ь (W&dW)					
	1	_	36	dart		949		систематиче погрешности	шности еская ь (W&dW)					
				φακι		ana	пизирусмыи	систематическая погрешность (W&dW)						
	10	-	12	замеры		ана	пизируемый	систематическая погрешность (W&dW)						
								систематическая погрешность (W&dW)						
							c		- ,					
Г					Исхо	олная	скважина	Анапиз	скважина					
	Куст анализ.	C	Скважина анализ.	Ствол анализ.	глубин стволу	а по /, м	абсолют. отметка, м	глубина по стволу, м	абсолют. отметка, м					
	1	3	36	факт	40.00		-1/5./1	39.14	-176.02					
	10	7	12	замеры	220.00		-0.95	250.42	22.60					

Мегионская свита - К1/mg

-1 000

-500

Ó

-1 500

14. В инклинометрии на вкладке «Вертикальная проекция - развёртка» добавилось отображение стратиграфии.

В настройках отображения на вкладке «Геология-стратиграфия» можно включить отображение, а также задать цвет, ширину и прозрачность заливки пласта.

15. В настройках отображения на вкладке «Геология-пласты» появилась возможность включать или выключать водоносные пласты.

1 000

1 500

2 000

2 500

500

Отклонение от устья, м

Обсадные колонны Ге	ология-страт	играфия Г	еология - пласт	ы Комментар	оии Стволы	Объекты бурения (цели)
Геологический пласт	Глубина по стволу, м	Глубина по вертикали,	о Мощность м пласта, м	Цвет линий	Заливка пл	аста Настройки Прафическое отображение
Галит	621.3	600	.0 100.0			ПКонцентарий
Нефть-К1/alm (AB1 ^1-2)	1846.4	1746	.0 17.0			Сомментарии
Нефть-К1/vrt (АВ1 ^3)	1872.0	1770	.0 13.0			Размер шрифта 🛛 8 📮
Газ-K1/vrt	1882.7	1780	.0 20.0			Цвет фона 🗨 …
Нефть-К1/mg (БВ8 ^1-2)	2476.9	2230	.0 6.0			
	•					нефтенотекучие водоносные

16. В анализ пересечений добавлены следующие приборы, описанные по модели ISCWSA:

- BLIND (A026Ua).
- INC-ONLY (A027Ua).
- INC-ONLY_PLANNED_5_DEG (A028Ua).
- UNKNOWN (A029Ua).
- BLIND+TREND (B022Ua)

Эллипс неопределенности

Owollf/dWardt Poor magnetizativ Параметры инструмента 1 OL ISCWSA MWD Rev4 Imagnetizativ Imagnetizativ <th>-Тип мод</th> <th>ели - инструмент</th> <th>Ошибки</th> <th>(sigma)</th> <th>Mc</th>	-Тип мод	ели - инструмент	Ошибки	(sigma)	Mc
ISCWSA Image: American structure Поверхность 2.7955 Image: American structure He MWD Rev0 MWD Rev2 Image: American structure Image: American structure <td>⊖Wollf</td> <td>/dWardt Poor magnetizati</td> <td>Параметр</td> <td>оы 1 нта 1</td> <td>Οι</td>	⊖Wollf	/dWardt Poor magnetizati	Параметр	оы 1 нта 1	Οι
 ISCWSA MWD Rev4 MWD Rev0 MWD Rev2 MWD Rev3 MWD FAG Rev3 MWD+AX Rev4 MWD+AX Rev4 MWD+AX Rev4 T60.0 MWD+AX Rev4 T60.0 MWD+AX Rev3 MWD+AX Rev4 T60.0 MWD+AX Rev4 T60.0 MWD+AX Rev4 T60.0 MWD+AX Rev3 T60.0 MWD+AX Rev4 T60.0 MWD+AX Rev3 T60.0 MWD+AX Rev4 T60.0 MWD+AX Rev4 T60.0 MWD+AX Rev3 T1.1 T60.0 MWD+AX Rev4 T7.3 T1.1 T60.0 MWD+AX+SAG Rev3 Floating Rig T1.2 T1.2 T1.0 T1.0			Поверхни	ость	He
MWD Rev0 MWD Rev2 MWD Rev3 e Lateral Vertical 338.0 MWD+AX Rev3 e Lateral Vertical 338.0 MWD+AX Rev3 r.3 9.1 1.1 760.0 MWD+AX Rev4 r.3 9.1 3.1 1263.0 Wireline_GIS 3.0 16.6 5.5 1583.0 MWD+AX FAG Rev3 Floating Rig 3.0 16.6 5.5 1583.0 MWD+AX SAG Rev3 Floating Rig 3.0 16.6 5.5 1583.0 MWD+AX+SAG Rev3 Floating Rig 3.1 2.9.8 9.7 268.0 PoorMag ISCWSA Standard 3.3 32.7 11.0 2268.0 PoorMag ISCWSA Edit 3.3 32.7 11.0 2287.0 GYRO-GMO 18 39.6 15.5 2470.0 INC-ONLY (A027Ua) 1 39.9 15.7 2490.0 INC-ONLY PLANNED_5_DEG (A028Ua) 2 40.3 16.0 2530.0 89.73 0.00 2232.6 1 <	ISCW	SA MWD Rev4	эллипсои	да 2.7955	О.
Image: Market of the stress		MWD Rev0			
Mc MWD Rev3 e Lateral Vertical MD MWD+SAG Rev3 e Lateral Vertical 338.0 MWD+AX Rev3 2.7 3.1 1.1 760.0 MWD+AX Rev4 7.3 9.1 3.1 1263.0 MWD+AX Rev4 7.3 9.1 3.1 1263.0 Wireline_GIS 3.0 16.6 5.5 1583.0 MWD Rev3 Floating Rig 3.0 16.6 5.5 1583.0 MWD+AX SAG Rev3 Floating Rig 5.6 21.3 7.0 2155.0 PoorMag ISCWSA Standard 3.3 32.7 11.0 2268.0 PoorMag ISCWSA Edit 3.3 32.7 11.0 2287.0 GYRO-GMS-ISGYRO-DP 3.6 33.1 11.2 2470.0 EUND (A026Ua) 1 39.9 15.7 2490.0 INC-ONLY (A027Ua) 1 39.9 15.7 2490.0 UNKNOWN (A029Ua) 2 40.3 16.0 2530.0 89.75 0.00 <td></td> <td>MWD Rev2</td> <td></td> <td></td> <td></td>		MWD Rev2			
MWD Rev4 MD MWD+SAG Rev3 e Lateral Vertical 338.0 MWD+AX Rev3 2.7 3.1 1.1 760.0 MWD+AX Rev4 7.3 9.1 3.1 1263.0 MWD Rev3 Floating Rig 8.0 16.6 5.5 1263.0 MWD Rev3 Floating Rig 5.6 21.3 7.0 2155.0 MWD +XX SAG Rev3 Floating Rig 5.6 21.3 7.0 2155.0 PoorMag ISCWSA Standard 3.3 32.7 11.0 2268.0 PoorMag ISCWSA Edit 3.3 32.7 11.0 2287.0 GYRO-GMS-ISGYRO-DP 8.6 33.1 11.2 2470.0 EUND (A026Ua) 18 39.6 15.5 2478.0 INC-ONLY (A027Ua) 1 39.9 15.7 2490.0 UNKNOWN (A029Ua) 2 40.3 16.0 2530.0 89.75 0.00 2232.6 1.1 41.7 17.1 2975.0 89.75 0.00 2232.	<u> 11 1</u> 1	Md MWD Rev3	e p	асчета	
MD MWD+SAG Rev3 e Lateral Vertical 338.0 MWD+AX Rev3 2.7 3.1 1.1 760.0 MWD+AX Rev4 7.3 9.1 3.1 1263.0 MWD+AX Rev3 7.3 9.1 3.1 1263.0 MWD+SAG Rev3 7.3 9.1 3.1 1263.0 MWD+SAG Rev3 Floating Rig 5.6 21.3 7.0 2155.0 MWD+SAG Rev3 Floating Rig 5.6 21.3 7.0 2155.0 PoorMag ISCWSA Standard 3.3 32.7 11.0 2268.0 PoorMag ISCWSA Edit 3.3 32.7 11.0 2287.0 GYRO-GMS-ISGYRO-DP 3.6 33.1 11.2 2470.0 EUND (A026Ua) 18 39.6 15.5 2478.0 INC-ONLY (A027Ua) 1 39.9 15.7 2490.0 UNKNOWN (A029Ua) 2 40.3 16.0 2530.0 89.75 0.00 2232.6 1.1 41.7 17.1 2975.0		MWD Rev4			
338.0 MWD+AX Rev3 2.7 3.1 1.1 760.0 MWD+AX Rev4 7.3 9.1 3.1 1263.0 MWD+AX SAG Rev3 7.3 9.1 3.1 1263.0 Wireline_GIS 8.0 16.6 5.5 1583.0 MWD+SAG Rev3 Floating Rig 5.6 21.3 7.0 2155.0 PoorMag ISCWSA Standard 8.3 32.7 11.0 2268.0 PoorMag ISCWSA Edit 3.3 32.7 11.0 2287.0 GYRO-GMS-ISGYRO-DP 8.6 33.1 11.2 2470.0 BLIND (A026Ua) 1 39.9 15.7 2478.0 INC-ONLY (A027Ua) 1 39.9 15.7 2490.0 UNKNOWN (A029Ua) 2 40.3 16.0 2530.0 89.75 0.00 2232.6 1.1 41.7 17.1 2975.0 89.75 0.00 2234.6 28.9 57.9 28.8	MD	MWD+SAG Revs	e	Lateral	Vertical
760.0 MWD+AX+SAG Rev3 7.3 9.1 3.1 1263.0 Wireline_GIS 3.0 16.6 5.5 1583.0 MWD+SAG Rev3 Floating Rig 5.6 21.3 7.0 2155.0 MWD+AX+SAG Rev3 Floating Rig 5.6 21.3 7.0 2155.0 MWD+AX+SAG Rev3 Floating Rig 3.1 29.8 9.7 2268.0 PoorMag ISCWSA Standard 8.3 32.7 11.0 2287.0 GYRO-GMS-ISGYRO-DP 8.6 33.1 11.2 2470.0 BLIND (A026Ua) 8 39.6 15.5 2478.0 INC-ONLY (A027Ua) 1 39.9 15.7 2490.0 UNKNOWN (A029Ua) 2 40.3 16.0 2530.0 89.75 0.00 2232.6 1.1 41.7 17.1 2975.0 89.75 0.00 2234.6 28.9 57.9 28.8	338.0	MWD+AX Rev4	2.7	3.1	1.1
1263.0 Wireline_GIS MWD Rev3 Floating Rig 3.0 16.6 5.5 1583.0 MWD+SAG Rev3 Floating Rig 5.6 21.3 7.0 2155.0 MWD+AX+SAG Rev3 Floating Rig 5.6 21.3 7.0 2155.0 MWD+AX+SAG Rev3 Floating Rig 5.6 21.3 7.0 2268.0 PoorMag ISCWSA Standard 5.6 33.1 29.8 9.7 2268.0 PoorMag ISCWSA Edit 5.6 33.1 11.2 2470.0 GYRO-GMS-ISGYRO-DP 5.6 33.1 11.2 2470.0 BLIND (A026Ua) 18 39.6 15.5 2478.0 INC-ONLY (A027Ua) 1 39.9 15.7 2490.0 UNKNOWN (A029Ua) 1 39.9 15.7 2490.0 UNKNOWN (A029Ua) 2 40.3 16.0 2530.0 89.75 0.00 2232.6 1 1 41.7 17.1 2975.0 89.75 0.00 2234.6 28.9 57.9 28.8 <td>760.0</td> <td>MWD+AX+SAG Rev3</td> <td>7.3</td> <td>9.1</td> <td>3.1</td>	760.0	MWD+AX+SAG Rev3	7.3	9.1	3.1
1583.0 MWD+SAG Rev3 Floating Rig 5.6 21.3 7.0 2155.0 MWD+AX+SAG Rev3 Floating Rig 3.1 29.8 9.7 2268.0 PoorMag ISCWSA Standard 3.3 32.7 11.0 2287.0 GYRO-GMS-ISGYRO-DP 3.6 33.1 11.2 2470.0 GYRO-DEMO 3.6 33.1 11.2 2478.0 INC-ONLY (A027Ua) 1 39.9 15.7 2490.0 UNKNOWN (A029Ua) 2 40.3 16.0 2530.0 89.73 0.00 2232.6 1.1 41.7 17.1 2975.0 89.75 0.00 2234.6 28.9 57.9 28.8	1263.0	Wireline_GIS MWD Rev3 Floating Rig	8.0	16.6	5.5
2155.0 MWD+AX+SAG Rev3 Floating Rig PoorMag ISCWSA Standard PoorMag ISCWSA Edit 3.1 29.8 9.7 2268.0 PoorMag ISCWSA Edit 3.3 32.7 11.0 2287.0 GYRO-GMS-ISGYRO-DP 3.6 33.1 11.2 2470.0 GYRO-DEMO 1.8 39.6 15.5 2478.0 INC-ONLY (A027Ua) 1 39.9 15.7 2490.0 UNKNOWN (A029Ua) 2 40.3 16.0 2530.0 89.73 0.00 2232.6 1.1 41.7 17.1 2975.0 89.75 0.00 2234.6 28.9 57.9 28.8	1583.0	MWD+SAG Rev3 Floating R	ig 5.6	21.3	7.0
2268.0 PoorMag ISCWSA Standard 3.3 32.7 11.0 2287.0 GYRO-GMS-ISGYRO-DP 3.6 33.1 11.2 2470.0 EUND (A026Ua) 8 39.6 15.5 2478.0 INC-ONLY (A027Ua) 1 39.9 15.7 2490.0 UNKNOWN (A029Ua) 2 40.3 16.0 2530.0 89.73 0.00 2232.6 1 1 41.7 17.1 2975.0 89.75 0.00 2234.6 28.9 57.9 28.8	2155.0	MWD+AX+SAG Rev3 Floatin	ng Rig 8.1	29.8	9.7
2287.0 GYRO-GMS-ISGYRO-DP 3.6 33.1 11.2 2470.0 BLIND (A026Ua) 18 39.6 15.5 2478.0 INC-ONLY (A027Ua) 1 39.9 15.7 2490.0 UNKNOWN (A029Ua) 2 40.3 16.0 2530.0 89.73 0.00 2232.6 1.1 41.7 17.1 2975.0 89.75 0.00 2234.6 28.9 57.9 28.8	2268.0	PoorMag ISCWSA Standard PoorMag ISCWSA Edit	8.3	32.7	11.0
2470.0 GYRO-DEMO 2470.0 BLIND (A026Ua) 2478.0 INC-ONLY (A027Ua) 1 39.9 2490.0 INC-ONLY (A027Ua) 2490.0 UNKNOWN (A029Ua) 2530.0 89.73 0.00 2975.0 89.75 0.00 2234.6 28.9 57.9 28.8	2287.0	GYRO-GMS-ISGYRO-DP	8.6	33.1	11.2
2478.0 INC-ONLY (A027Ua) 1 39.9 15.7 2490.0 INC-ONLY PLANNED_5_DEG (A028Ua) 2 40.3 16.0 2530.0 89.73 0.00 2232.6 3 1 41.7 17.1 2975.0 89.75 0.00 2234.6 28.9 57.9 28.8	2470.0	BLIND (A026Ua)	.8	39.6	15.5
2490.0 INC-ONLY_PLANNED_5_DEG (A028Ua) .2 40.3 16.0 2530.0 89.73 0.00 2232.6 .1.1 41.7 17.1 2975.0 89.75 0.00 2234.6 28.9 57.9 28.8	2478.0	INC-ONLY (A027Ua)	.1	39.9	15.7
2530.0 89 73 0.00 2232.6 3/.1 41.7 17.1 2975.0 89.75 0.00 2234.6 28.9 57.9 28.8 <	2490.0	UNKNOWN (A029Ua)	(A028Ua)	40.3	16.0
2975.0 89.75 0.00 2234.6 28.9 57.9 28.8 <	2530.0	89.73 0.00 2232.6	1.1	41.7	17.1
<	2975.0	89.75 0.00 2234.6	28.9	57.9	28.8
•	<				
	•				

Covariance matrix

A026Ua	Where no survey information was recorded or where the information no longer exists and there is no other supporting information to just
A027Ua	Inclination only surveys for vertical wells with inclinations less than 5 deg (e.g. Totco Teledrift and Anderdrift)
A028Ua	Inclination only surveys for vertical wells with inclinations less than 5 deg (e.g. Totco Teledrift and Anderdrift)
A029Ua	For use when survey data exists at any interval not exceeding 200ft but the origin or legacy quality of the data is unknown.

Одновременное нажатие «Ctrl+Alt+A» добавляет 19 приборов в справочник «Инструмент (инклинометрия)», включая 3 прибора для скважин, буримых с плавучих платформ.

17. Добавлена система геодезических параметров (датум) – ГСК- 2011 (ГОСТ 32453-2017).

	φ.		
Система геодезически» параметров (датум)	ГСК-2011 🗸	Дата 17.12.20	21 🗸
Цилиндрическая проекция Gaus	s-Kruger 🗸 🗸	Номер 6 град. зоны 12 🗸	Расчёт зоны
Геомагнитная модель	IGRF 🗸	уточнённое этало геомагнитное по	онное)ле
модель описывает пер	иод: от 01.01.1900 до	31.12.2024	
Координаты			
Координаты Широта, град	60.22881074	Долгота, град 69.7	5414373 冒

18. В методе «Дуга-Прямая-Дуга» («Дуга-Дуга») появилась возможность задавать пространственную интенсивность одной из дуг.

Если установить галочку «задан. интенсивн.», то одной из дуг можно задать пространственную интенсивность, в результате расчета будет рассчитанная пространственная интенсивность для другой дуги.

🔳 Проектирование v20.5 — 🗌														×					
•	Вставит	метод (In	s) 📮 Уда	алить мет	год (Del) 🗙	Очистить	🦪 Отм	енить	📙 Сохранить	в Вернуть	Разбить м	етод Граф	ическое отобр	ажение			Направление	азимута: ис	тинный
	Автомати	ческий пер	ресчёт данн	ых инкли	нометии (при	изменении	парамет	ров мето	ода проектиро	вания) 🗌 Ко	нтроль полож	сения забоя	Объекты б	урения и зо	на контакта	Попра	вки		
N₽	Глубина по стволу, г	Длина участка, м	Зенитный угол, град	Азимут, град	Вертикальна: глубина, м	вертикал глуби (море)	тыная на см	Лок. нещение северу, м	Лок. смещение к востоку, м	Отклонение от устья, м	Азимут Г смещения, град	іространств. интенсив., град/10 м	Угол установки отклон., град	Интенсив. по зениту, град/10 м	Интенсив. по азимуту, град/10 м	Индекс сложности бурения	Тип участка	Комментарий	
1	0.0	0.0	0.000	0.000	0.	5	-44.4	0.0	0.0	0.0	0.000	0.000	0.000	0.000	0.000	0.00	TIE LINE		
2	2 500.0	500.0	0.000	0.000	500.	0	455.6	0.0	0.0	0.0	0.000	0.000	0.000	0.000	0.000	0.00	INC_AZI_MD		
3	3 750.	250.0	50.000	350.000	719.	5	675.1	100.8	-17.8	102.3	350.000	2.000	350.000	2.000	14.000	4.24	INC_AZI_MD		
4	916.	166.2	31.126	0.144	845.	3	800.9	207.5	-28.8	209.5	352.090	1.200	164.518	-1.136	0.610	4.72	OPT_AL_TL_DLSF		
5	1258.4	342.2	62.966	52.546	1083.	5 5	1039.2	400.0	100.0	412.3	14.036	1.401	71.931	0.930	1.531	5.30	OPT_AL_TL_DLSF		
(5																INSERT LINE		
<															>				
По J-r	сле добав профиль	ления, вста S-профил	авки, удален ь Простра	ния метод анственна	ца проектиров 1я кривая Пл	ания или р оская дуга н	едактиро на точку	вании па	араметров мет я дуга на напр	авление Уча	вания выпол	ните "Расчёт" ации Дуга-I	Прямая-Дуга					Расчё	r (F2)
								Направле	ние касательн	ой в конечной	і точке — Коо	рлинаты цел	14:						
	🔿 Простр	анственна	я интенсив	ность 1:	1.200	2: 1	.401	енитный	і угол, град:	62.9	66 Глу	бина по верт	гикали, м: 🗾	083.6					
	○ Глубин	а по верти	кали	1:	845.3	2: 8	345.3	зимутал -	ьный угол, гра	д: 52.5	46 CM	чиение на се	вер м:	400.0	Глобальнь 6680342 3				
	Длина	участка ста	абилизации	: 🗌 бала Г 🗹 зада	нс интенсивн. н. интенсивн.		0.0	совмести выбранн	іть зенит и ази ой цели:	мут относител	ыно с Сми	ещение на во	осток. м:	100.0					
	 Глубин Обратно 	а по ствол е проектиј	у рование	1	○ 2	12	258.4	Цель отс	утствует илизация	дуга-прямая	Им	а цели: С	твол - 1250		~ @				

Галочки «баланс интенсивн.» и «задан. интенсивн.» участвуют в расчете при задании параметра «Длина участка стабилизации» больше нуля.

	🖪 Проект	ирование v	- 20.5							_							-		×
	🔊 Встави	ть метод (In	is) 📮 Уді	алить мет	од (Del) 💢 С	чистить	Отменить	📙 Сохранить	в 🔝 Вернута	Разбить и	иетод Графи	ическое отобр	ажение			Направление	азимут	а: исти	нный
C	Автомат	ический пе	ресчёт данн	ых инкли	нометии (при и	зменении пар	раметров мето	да проектиро	вания) 🗌 Ко	нтроль поло	жения забоя	🗌 Объекты б	урения и зо	на контакта	Попра	вки			
Γ	№ Глуби по стволу	на Длина участка, м м	Зенитный угол, град	Азимут, град	Вертикальная глубина, м	Вертикальна глубина (море), м	ая Лок. смещение к северу, м	Лок. смещение к востоку, м	Отклонение от устья, м	Азимут смещения, град	Пространств. интенсив., град/10 м	Угол установки отклон., град	Интенсив. по зениту, град/10 м	Интенсив. по азимуту, град/10 м	Индекс сложности бурения	Тип участка	Коммент	арий	
	1 (0.0	0.000	0.000	0.0	-44	4.4 0.0	0.0	0.0	0.000	0.000	0.000	0.000	0.000	0.00	TIE LINE			
	2 50	0.0 500.0	0.000	0.000	500.0	455	5.6 0.0	0.0	0.0	0.000	0.000	0.000	0.000	0.000	0.00	INC_AZI_MD			
	3 75).0 250.0	50.000	350.000	719.5	675	5.1 100.8	-17.8	102.3	350.000	2.000	350.000	2.000	14.000	4.24	INC_AZI_MD			
	4 97	7.1 227.1	35.479	23.050	887.9	843	3.5 249.7	-6.9	249.8	358.422	1.160	134.505	-0.639	1.455	4.84	OPT_AL_TL_DLSL			
-	5 107	1 100.0	35.479	23.050	969.3	924	1.9 303.1	15.8	303.5	2.992	0.000	0.000	0.000	0.000	4.94	OPT_AL_TL_DLSL			
	7	1.0 174.5	02.900	52.540	0,001	1059	nz 400.0	100.0	412.5	14.050	2.000	00.000	1.575	1.090	5.27	INSERT LINE			
														1					
4	5																		>
1	Іосле добі І-профиль	авления, вст S-профи/	авки, удален 16 Простра	ния метод анственна	а проектирова ія кривая Пло	ния или реда ская дуга на т	ктировании па очку Плоска	раметров мет я дуга на напр	года проектиро равление Уча	ования выпо сток стабили	лните "Расчёт" зации Дуга-Г	Трямая-Дуга					P	асчёт (F2	2)
							Hannana			ž touvo – Ko									
	ОПрос	транственна	ая интенсив	ность 1:	1.160 2	2.000	0 Зенитный	угол, град:	62.9	66 Гл	убина по верт	и. икали, м: 10	083.6						
	О Глуби	іна по верти	кали	1:	887.9 2	969.3	Азимуталь	ьный угол, гра	д: 52.5	46		⊻ Ло	кальные	Глобальнь	ie I				
	🖲 Длин	а участка ст	абилизации	: 🗌 бала	нс интенсивн. н. интенсивн. 🗌	100.0	Совмести выбранн	ть зенит и ази ой цели:	имут относител	ьно Сі	лещение на се	вер, м:	400.0						
	О Глуби	іна по ствол	У	01	2	1251.6	б Цель отсу	/тствует	\sim	·	icajennie na bo		10010	57105510					
•	Обратн	юе проекти	рование				🗸 стаби	илизация	дуга-прямая	И	ия цели: Ст	вол - 1250		× (@					

19. Добавилось возможность задавать комментарий через справочник/каталог.

🔳 Справочник				
Копировать справочник в буфе	р обмена			
Каталог				
Категория	[puppo	Добавить значение	Удалить значе	ние
_Сургутнефтегаз	Комментарии к замеру	Зизцени	(A	-
Бурильная труба	_	Верх ГНО		
Геологическая характеристика	_	Голова хвостовика		
Геология		Keny Peny		-
Конструкция		Керньерх		_
Месторождения		керн низ		_
	-	Низ ГНО		
Обсадная колонна	-	Окно		
Ppoortuue anuue	the second se	Срезка		
Профиль		Фразарорания		-
Растворы		фрезерование		
	-			- C

20. Добавилось возможность задавать элементы шаблона «по кругу»

Количество скважин можно задать или рассчитать через угол сектора

21. В анализ пересечений добавлены следующие приборы, описанные по модели ISCWSA:

- KNGF MWD;
- KNGF MWD+BGGM;
- KNGF MWD+AXIAL;
- PWT MWD+SAG;
- PWT MWD+AXIAL;
- PWT MWD+AXIAL+SAG.

-	11086	рхно
ISCWS	A PTW MWD+SAG 💌 ··· Элли	псои
	Инструмент из БД	~
	MWD Rev0	
<u>U16</u>	1d MWD Rev2	
	MWD Rev3	
MD	MWD Rev4	
100.00	MWD+SAG Rev3	
100.00	MWD+AX Rev3	
200.00	MWD+AX Rev4	
317,49	MWD+AX+SAG Rev3	
	Wireline_GIS	
1423.43	MWD Rev3 Floating Rig	
1540.92	MWD+SAG Rev3 Floating Rig	
	MWD+AX+SAG Rev3 Floating Rig	
1590.92	শW MWD+SAG	
1600.00	PTW MWD+AXIAL	
2000.00	TW MWD+AXIAL+SAG	
2000.00	KNGF MWD	
2300.00	KNGF MWD+BGGM	
2600.00	KNGF MWD+AXIAL	
2000.00	PoorMag ISCW5A Standard	

Одновременное нажатие «Ctrl+Alt+A» добавляет эти 6 приборов в справочник «Инструмент (инклинометрия)».

22. Сохранение выбора в іпі файл автоматического расчета при проектировании.

В	Проектирование v21.9														
ø	🚱 Вставить метод (Ins) 📮 Удалить метод (Del) 🗱 Очистить 🌗 🖷 Отменить 🗐 Сохранить 🖿 🖿 Ве														
, ⊡	🗹 Автоматический пересчёт данных инклинометии (при изменении параметров метода проектирования)														
N₽	Глубина	Зенитный	Азимут,	Длина	Вертикальная	Вертикальная	Лок.	Лок.	Отклоне						
Nº	Глубина по	Зенитный угол, град	Азимут, град	Длина участка,	Вертикальная глубина, м	Вертикальная глубина	Лок. смещение	Лок. смещение к	Отклоне от устья,						
N₽	Глубина по стволу, м	Зенитный угол, град	Азимут, град	Длина участка, м	Вертикальная глубина, м	Вертикальная глубина (море), м	Лок. смещение к северу, м	Лок. смещение к востоку, м	Отклоне от устья,						
Nº 1	Глубина по стволу, м 0.00	Зенитный угол, град 1.00	Азимут, град 180.00	Длина участка, м 0.00	Вертикальная глубина, м 0.00	Вертикальная глубина (море), м 0.00	Лок. смещение к северу, м 0.00	Лок. смещение к востоку, м 0.00	Отклонен от устья,						

23. В анализе пересечений у галочки отображения целей - три состояния:

- отображение целей всех стволов;
- не отображение целей всех стволов;
- отображение целей исходного ствола.

🗹 Куст 🗌 НДС	🔳 Цели 🗌 Метки
сближения	Комментарии

24. В контроле отклонения добавилось сохранение выбранного ствола

	S Отчёт кция Трёхмерное п		📰 Ha	астройки				f	Навига ня	атор по	инкл	ином	етрии ₩
екция	Трёх	мерное по	строение	Контроль	отклонения	Диагра	аммы изменения	я параметров п	рофиля	4			
цу заме	рами	Оперпе	ндикулярн	ная плоскост	ъ Выбери	те ствол	адля анализа	Ілан V1 ИДС			~		
		Анализир	очемый ств	ол	Разни	ица	Направление		Расстоя	ние. м			~

- 25. В параметрах куста и скважины появились ошибки позиционирования:
 - по горизонтали;
 - по вертикали.

Дата начала бурения куста	\sim		
Магнитное склонение	0 ~	0° 0' 0''	
Направление движения станка	0 ~	0° 0' 0''	
—Ошибка позиционирования куст	а		1
По горизонтали, м 0.0	По вертикали,	, м 0.0	
🛱 Расчёт координат 🛛 🍳 Карта	Сохрани	ить Отмена	
Координаты устья скважины Расчёт	координат отно	сительно другой (кважины
Элемент шаблона куста:	✓ □ ^Γ _y	Терестроить про¢ чётом изменённо	оиль с ого устья
Смещение Покальные на север, м	600.000 См на	иещение восток, м	600.0000
О Глобальные Смещение на север, м	600.0000 См на	иещение восток, м	600.0000
С Геодезические Цирота Latitude N)0540942 <mark>V До</mark> Lo	олгота ngitude E	849689 🗸
Ошибка позиционирования скважи	ны		
По горизонтали, м 5.0 П	о вертикали, м	3.0	
Магнитное склонение 0 🗸	Сближ скважи	ение мерид. ины, град	0.000
🖩 Расчёт координат 🛛 🎯 Карта		💾 Сохранить	Отмена

Задав эти значения, будет рассчитан эллипсоид на начальной глубине.

ISCWSA MWD Rev4												
	Исходны	е данные		Данные р	асчета							
MD	INC	AZI	TVD	Highside	Lateral	Vertical	SemiMajor	SemiMajor -v1				
100.00	10.00	180.00	99.44	14.86	15.00	9.06	15.00	15.00				
200.00	10.0C j	Интерполя	Антерполяция эллипсоида									
317.49	21.75	-						0				
1423.43	21.75		ID	LINE COL		Latora		Данные р Vortikal				
1540.92	10.00	IV	0.00	naid	15.00	Latera	15.00	9.00				
1590.92	10.00		10.00		15.00	15.00		9.01				
1600.00	25.00		20.00		14.00	15.00		9.01				
2000.00	85.00		30.00		14.98	15.00		9.02				

26. В расчете эллипса неопределенности добавилась совместное использование нескольких (макс 3 шт.) приборов описанных по модели «ISCWSA».

Ствол Х
Ствол Привязка второго ствола Геодезия
Наименование Скв. 2 (факт)
● Факт ○ План ○ Профиль
🗹 Актуальный ствол
Тип ствола
Цвет проекции 🔛 🖂 🗙
Инструмент для замера инклинометрии Если инструмент применяется до забоя, то глубину можно оставить нулевой
Инструмент 1 KNGF MWD 🗸
Глубина инструмента 1 (ствол), м 0
Инструмент 2 KNGF MWD+AXIAL 🗸
Глубина инструмента 2 (ствол), м 1500
Инструмент 3 KNGF MWD+BGGM 🗸
Глубина инструмента 3 (ствол), м 2300
Сохранить Отмена

Одноименные функции в разных приборов не «суммируются», а считаются как разные.

 ISCW 	SAИнстру	мент из БД	q v	Поверхно эллипсои,	сть да	3												
	Исходные	данные		Данные ра	асчета													
MD 2300.00	INC 45.00	AZI 160.00	TVD 1854.29	Highside 16.25	Later 21	al 1.81	Vertical 11.03	SemiMa 2	ajor 21.89	SemiMajor -v1 22.19	Semil	Minor 18.14	Min. Azimut 178.59	Semi-Axis 1 22.19	Semi-Axis 2 18.27	Semi-Axis 3 10.81	Ra 20.40	TFO-H 244
2600.00	25.00	150.00	2098.98	18.89	22	2.14	11.44	2	22.63	22.91		18.54	175.94	22.91	18.67	11.22	20.83	249
<																		
-								(_	v	_)			-		-
Covarianc	e matrix																	
	COVXX			COVXY			COVXZ			COVYY			COVYZ	CC	OVZZ		Name Too	IS
		225.11	1		0.00			0.00		22	25.09		-0.09		82.1	2 ISCWSA KN	GF MWD	_
		225.95	5		0.00			0.00		22	25.75		-0.08		82.2	0 ISCWSA KN	GF MWD	
		228.52	2		0.00			0.00		22	27.41		0.19		82.4	1 ISCWSA KN	GF MWD	
		375.06	5		0.00			0.00		29	95.27		22.71		98.2	ISCWSA KN	GF MWD	
		389.08	3		0.00			0.00		30)1.34		25.19		101.0	7 ISCWSA KN	GF MWD+A	x
		389.43	3		0.00			0.00		30	01.61		25.16		101.9	3 ISCWSA KN	GF MWD+A	x
		389.55	5		-0.03			0.08		30	01.76		25.03		101.9	9 ISCWSA KN	GF MWD+A	x
		433.69	5		3.62			-0.80		3(08.09		26.68		113.0	8 ISCWSA KN	GE MWD+A	x
		492.13	,		4.01			-1.58		30	9.06		31.80		121.6		GE MWD+B	SGM
		= = = = = = = = = = = = = = = = = = = =	7		2.70			2 50		2	4 52		33.60		121.0			CM
		323.01			2.19			-2.50		24	14.55		52,50		150.0	ISCWSA KN		3GIW

27. В анализ пересечений добавлены следующие приборы, описанные по модели ISCWSA:

- Gyro-NS-GC_Wireline (H049Ga).
- BTS-MWD.
- GYRO-NS (A020Ga).
- GYRO-NS (A020Gb).
- GYRO UNKNOWN (H052Ga).

Одновременное нажатие «Ctrl+Alt+A» добавляет эти 5 приборов в справочник «Инструмент (инклинометрия)».

28. Добавлены описания приборов, описанные по модели ISCWSA

роекция	Горизо	нтальная проекц	ция Трёхмер	ное постр	оение Контр	оль отклонения Диаграммы изме	енения параметров профиля
Изменен	ние про	филя на участке	± Просмот	гр усреднё	нного профи	ия 🖕 Эллипс неопределенности	Свойства Exp PETREL
🔳 Элл	ипс нео	пределенности					
Тип мо,	дели - ин	нструмент	Оши	бки (sigma	3)	Wollf/dWardt - Мой инструмент —	
OWoll	f/dWard	t Poor magnetiza	ati V Пара	метры	1	Ошибка в опред. глубины, м/1000	м: 1.00 Ошибка в опред. истин. азимута, град: 0.750
			Пове	румента 🗆 рхность Г	2 7055	Несоосность прибора, град:	0.150 Ошибка в опред. магнит. азимута, град: 2.500
ISCW	/SA MW	D Rev4	• \cdots элли	псоида	2.7955	Ошибка в опред. зенита, град:	0.500 Ошибка в опред. азимута гироскопа, град: 0.000
16.3		Tools ISCWSA MV	VD Rev4				
	Исход	rool Type: MWD;	Source: SPE 6	3275			
MD	INC	Application: ISCW Notes: DECR and I	SA MWD (Fixe DBHR terms ad	d Rig) Rev4 ded. AMIL	OWSG MWD reduced from 3	Rev.2) 00 to 220 nT. XYM1. XYM2. XYM3. XYN	M4 increased from 0.06 to 0.1 deg. Same as OWSG MWD Rev.2
1664.99	61.2	P	roperty		I	, , , , , , , , , , , , , , , , , , , ,	Formula
2357.69	51.0	Nº Code	Magnitude	Units	Depth	Inclination	Azimuth
2397.69	51.0	1 DRFR	0.35	m	1	0	0
3256.48	77.9	2 DSFS	0.00056	-	MD	0	0
3421.86	85.0	3 DSTG	2.5E-7	1/m	MD * TVD	0	0
3516.35	89.1	4 ABXY-TI1S	0.004	m/s2	0	-Cos(Inc) / Gfield	(Tan(Dip) * Cos(Inc) * Sin(AzM)) / Gfield
3519.72	89.1	5 ABXY-TI2S	0.004	m/s2	0	0	((Tan((pi / 2) - Inc)) - Tan(Dip) * Cos(AzM)) / Gfield

29. В проектировании профиля «на цель» (с учетом круга допуска) добавилось отображение части профиля.

30. В обратном проектировании (метод «Дуга-Прямая-Дуга») добавилась возможность рассчитывать зенитный и азимутальный углы при заданных следующих начальных параметрах:

- - длина участка по стволу;
- - пространственная интенсивность;
- - угол установки отклонителя (в начале участка).

№ 1 2 3 4 5 6 <	Глубина по стволу, м 200.00 392.75 1858.85 2212.15	Зенитный угол, град 0.00 19.27 19.27 80.00	Азимут, град 0.00 0.00 30.97 30.97 90.00	Длина участка, м 0.00 200.00 192.75 1466.10 353.30	Вертикальная глубина, м 0.00 200.00 389.13 1773.06 2000.00	Вертикальная глубина (море), м 0.00 200.00 389.13 1773.06 2000.00	Лок. смещение к северу, м 0.00 27.54 442.52 500.00	Лок. смещение к востоку, м 0.00 0.00 16.52 265.53 500.00	Отклонение от устья, м 0.00 0.00 32.12 516.07 707.11	Азимут смещения, град 0.00 0.00 30.97 30.97 45.00	Пространств. интенсив, град/10 м 0.000 1.000 0.000 2.000	Угол установки отклон., град 0.00 30.97 0.00 63.50	Интенсив. по зениту, град/10 м 0.000 1.000 0.000 1.719	Интенсив. по азимуту, град/10 м 0.000 0.000 0.000 1.671	Индекс сложности бурения 0.00 0.00 3.31 4.53 5.40	THE LINE INC_AZI_MD OPT_AL_DLS OPT_AL_DLS OPT_AL_DLS OPT_AL_DLS INSERT LINE
J-np	офиль	ения, встав 5-профиль	Простра	анственна	я кривая Плос	жая дуга на точ	ку Плоска	раметров мет а дуга на напр	оавление Уча	асток стабил	изации Дуга-Г	Ірямая-Дуга				
) Простра) Глубина) Длина у) Глубина Обратное	нственная по вертика частка стаб по стволу проектиро	интенсив или илизации вание	ность 1: 1: 6ала Эзада () 1	1.000 2: 389.13 2: нс интенсивн. н. интенсивн. 2	2.000 1773.06 1466.10 2212.15	Направле Зенитный Азимуталь Совмести выбранно Цель отоу	ние касателын угол, град: ный угол, гра ть зенит и ази ой цели: пствует плизация	ной в конечно 80 ид: 90 мут относите дуга-прямая	й точке К 0.00 льно С и	оординаты цел лубина по верт мещение на сен мещение на во 1мя цели: Це	и: икали, м: 20 Ø Ло вер, м: сток, м: ль отсутствует	00.00 🗐 окальные 500.00 500.00	Глобальны 1100.00 1100.00	ie j	
N₽	Глубина по стволу, м	Зенитный угол, град	Азимут, град	Длина участка, М	Вертикальная глубина, м	Вертикальная глубина (море), м	Лок. смещение к северу, м	Лок. смещение к востоку, м	Отклонение от устья, м	Азимут смещения, град	Пространств. интенсив., град/10 м	Угол установки отклон, град	Интенсив. по зениту, град/10 м	Интенсив. по азимуту, град/10 м	Индекс сложности бурения	Тип участка
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.00	TIE LINE
2	200.00	0.00	0.00	200.00	200.00	200.00	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.00	NC_AZI_MD
3	392.75	19.27	30.97	192.75	389.13	389.13	27.54	16.52	32.12	30.97	1.000	30.97	1.000	0.000	3.31	OPT_AL_DLS
4	1858.85	19.27	30.97	1466.10	1773.06	1773.06	442.52	265.53	516.07	30.97	0.000	0.00	0.000	0.000	4.53	OPT_AL_DLS
5	2212.15	80.00	90.00	353.30	2000.00	2000.00	500.00	500.00	707.11	45.00	2.000	63.50	1.719	1.671	5.40	OPT_AL_DLS
6		80.00	90.00		2000.00		500.00	500.00								BACK_TO_CL
1																NSERT LINE
Гос Об	ле добавл ратное пр	тения, встан ректирован	вки, удале ие	ния мето,	ца проектирова	ния или редакти	<u>іровании па</u> (ствол), м	раметров мет	20.00	ования выпо точке – Коо	олните "Расчёт" рдинаты цели:-					

	N₽	Глубина по стволу, м	Зенитный угол, град	Азимут, град	Длина участка, м	Вертикальная глубина, м	Вертикальная глубина (море), м	Лок. смещение к северу, м	Лок. смещение к востоку, м	Отклонение от устья, м	Азимут смещения, град	Пространств. интенсив., град/10 м	Угол установки отклон., град	Интенсив. по зениту, град/10 м	Интенсив. по азимуту, град/10 м	Индекс сложности бурения	Тип участка
	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.00	TIE LINE
	2	200.00	0.00	0.00	200.00	200.00	200.00	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.00	INC_AZI_MD
	З	392.12	19.21	28.88	192.12	388.54	388.54	27.94	15.41	31.91	28.88	1.000	28.88	1.000	1.503	3.31	OPT_AL_DLS
	4	1849.46	19.21	28.88	1457.35	1764.72	1764.72	447.83	247.04	511.45	28.88	0.000	0.00	0.000	0.000	4.53	OPT_AL_DLS
	5	2204.73	79.15	91.84	355.26	1996.38	1996.38	500.32	480.33	693.57	43.83	2.000	67.65	1.687	1.772	5.39	OPT_AL_DLS
Γ	6	2224.73	80.00	90.00	20.00	2000.00	2000.00	500.00	500.00	707.11	45.00	1.000	65.00	0.425	-0.920	5.42	BACK_TO_AZI_IN(
	7																INSERT LINE

После тестирования алгоритма планируется перевести расчет, как новый метод в обратном проектировании.

31. В пользовательском отчете по инклинометрии появилась возможность задать шаг интерполяции в самом файле xlt (в одном отчете создавать несколько таблиц с интерполяцией с разными шагами).

Для этого необходимо в ячейке под меткой [#TABLE_PROFIL_INT#] указать значение шага интерполяции.

	Глубина по стволу, м	Зенитный угол, град	Азимут магнитный, град	,
[#TABLE_PROFIL_INT#]	[#T_MD]	[#T_INC]	[#T_AM]	
25				

Если не указывать, то значения шага будет браться с формы «Отчёт».

Отчёт					×
Инклинометрия					
Интерполяция по стволу пр Шаг интерполя Вывод интервала профиля	оофиля ции, м <mark>10</mark>		от, м	0	замеры
	от, м	0	до, м	1587.000039	
		🔘 по	стволу	О по вертик	али
Добавить в общий отчет		Допо	лнителы	ные таблицы	
Обсадные колонны			Обсадны	е колонны	
🗌 Геология - пласты			еология	- пласты	
Комментарии к замерам			оммента	арии к замера	м

32. В пользовательском отчете по инклинометрии появилась возможность выводить в основной таблице параметр «Извилистость» .

Для этого в строке [#TABLE_PROFIL#] добавить код [#T_TORT]

22							
23	Глубина по стволу, м	Зенитный угол, град	Азимут магнитный, град	Интенсив. по зениту, град/10 м	Интенсив. по азимуту, град/10 м	Комментарий	Извилистость, град
2 [#TABLE_PROFIL#]	[#T_MD]	[#T_INC]	[#T_AM]	[#T_BUILD]	[#T_TURN]	[#T_COMM]	[#T_TORT]
25							

Шіі 🔥 Ин	нклинометрия										
Глубина по стволу, м	Зенитный угол, град	Азимут магнитный, град	/т смещения іекц.), град	Смещение вдоль ствола скважины, м	Пространственная интенсивность, град/10 м	Угол установки отклонителя, град	Интенсивность по зениту, град/10 м	Интенсивность по азимуту, град/10 м	Индекс сложности бурения	Индекс удаленности забоя от вертикали	Извилистость, град
0.00	0.00	0.00	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.00	0.00

Заливка строк по заданному цвету (обсадка, пласты, комментарии) в таблицах осуществляется, если в таблице присутствует код [#T_COMM]

	Интенсив. по азимуту, град/10 м	Комментарий	Извилистость, град
	0	500	22
1	0		22
1	0	Глуб. ст1500.00; Зенит- 10.93; Азим89.00	33.07
i	0		35.47
	0	Ствол - 1587	36.94

33. В расчет глобальных координат добавились новые местные системы (МСК86).

Геомагнитный кальк	улятор			×
Система геодезич параметров (дату	еских СК-42	\sim	Дата 28	.02.2023 ~
Цилиндрическая проекция	Gauss-Kruger	\sim	Номер б град. зоны	🤊 🗹 Расчёт зоны
Геомагнитная модель модель описывае	МСК56 - зона 3 МСК56 - зона 4 МСК59 - зона 1 МСК59 - зона 2 МСК59 - зона 3 МСК63 - зона 1		точнённое геомагнитн 2.2024	е эталонное ное поле
координаты Широта, гр	МСК63 - зона 2 МСК73 - зона 1 МСК73 - зона 2		ігота, град	53.08283111
Смещение север, м	МСК83 - зона 3 МСК83 - зона 5		ещение восток, м	640742.7261
	<u>МСК86 - зона 3</u> МСК86 - зона 4 МСК86 - зона 5		ота, м	0.0000

34. В пользовательском отчете по инклинометрии появилась возможность выводить в основной таблице глобальные прямоугольные координаты в системе ГеоНАЦ

Для вывода глобальных прямоугольных координат ХҮ, рассчитанных в системе ГеоНАЦ (СК-42 на проекции UTM) необходимо добавить следующие метки.

Координаты устья скважины:

[#GLOB_N_NAC#] и [#GLOB_E_NAC#]

В таблице [#TABLE_PROFIL#] или [#TABLE_PROFIL_INT#]:

[#T_YG_NAC] и [#T_XG_NAC]

Пример шаблона:

rai	вить 🍼 Формат по	образцу	ж <i>к</i> ч	• 🖽 •	<u>ð</u> - <u>A</u> -	E 8 8	. # #	📴 Объедин	ить и поместить в с	центре +	🥶 - %	000 500 500	фор
	Буфер обмена	Est.		Шрифт	Fa		В	ыравнивание		Est.	Чи	сло Га	
	N30	-	f_{x}										
4	А	В	С	D	E	F	G	Н	M		N	0	
2													
3		Глубина по стволу, м	Зенитный угол, град	Азимут магнитный, град	Азимут истинный, град	Азимут GRID, град	Глубина по вертикали, м	Абсолютная отметка, м	Гл. смещение к северу ГеоНАЦ, м	Гл. сме востоку	ещение к ГеоНАЦ, м	Пространст. интенсивность град/10 м	
1	[#TABLE_PROFIL#]	[#T_MD]	[#T_INC]	[#T_AM]	[#T_AI]	[#T_AG]	[#T_TVD]	[#T_TVD_M]	[#T_YG_NAC]	[#	T_XG_NAC]	[#T_DOG	iL]
5													

Для формирования отчета необходимо выбрать соответствующий шаблон.

TrajectUser_Glot 🗸	🗴 Пользовател. 📄 Zak 📄 Las 🔣 Отчёт 🕅 Отчёт Закры	пь
KNGF_Интерполяци	XIL	
spd.xlt		
TrajectUser_Full.xlt		
TrajectUser Global.x		
TraiectUser Graf.xlt		

35. В настройках отображения при анализе сближений появилась возможность управлять отрисовкой целей для заданного ствола.

Выбор скважин Анализ сбли	ожений 🛛 🏷 Отчёт	Анал	из сближе	ний стволо	ов скважин		
Табличные данные Графические	данные Диаграмма сбли	жений О	пасные сбл	ижения			
10 2Dh 2Dv	Pol	Скваж Рассто	кина/Ствол ояние	і <u>С</u> 6ли	жение в го сближения	риз. плоск. а в простр.	□ Геол □ Дан
	Настройка отображения					_	×
	Скважина/Ствол	Наличие	Цвет линии	Толщина линии	Цвет	Цель	^
	1614			2			
	1812/1812 вертикальная			2			
	1812/Ств. 1812 (план)			2			
	1812/Ств. 1812 (план) нов	\checkmark		2			
	1812/Ств. 1812 (план) нов	\checkmark		2		\checkmark	
							, ,
				Выбрать	все Сн	нять выделе	ние
	Объекты бурения (цели) - круг допуска			2		• ···	
	- центр точки цели		толщина линии	3	цвет		

36. При анализе сближений появилась возможность отображать расстояния по забоям в 3D и на горизонтальной плоскости.

37. В пользовательском отчете по инклинометрии появилась возможность выводить новые данные (задавать в ячейке Excel новые коды):

- в шапку отчета совмещенные параметры широты и долготы (разделитель любой) [#S_LATITUDE#] / [#S_LONGITUDE#]
- в шапку отчета совмещенные параметры глобальных ХҮ (разделитель любой) [#S_GLOB_N#] / [#S_GLOB_E#]
- в таблицы разницу между ствольной и вертикальной глубиной [#T_MD-TVD]

38. При проектировании в графическом отображении на левой вспомогательной панели появилась таблица с параметрами по пересечению :

- минимальное расстояние в пространстве;
- минимальное расстояние в пространстве с учетом ошибок (расстояние между эллипсами);
- фактор сближения.

оектир	ование v22.2						Графическое от	ображение										
тавить	метод (Ins)	🕂 Уд	алить мет	год (Del) 💢 С	Очистить 🔳 🌗	Отменить	I III 3D	2Dh 2Dv	DC DE	FS Pol	Иn	жазать ан	ализируемые ство	лы 🗹 Названи	е ствола	Me	етки в 20	Dh 🗹
эматич	еский пере	счёт данн	ых инкли	нометии (при и	зменении пара	метров м	2	Исходный ст	вол		^						-	
убина по	Зенитный угол, град	Азимут, град	Длина участка,	Вертикальная глубина, м	Вертикальная глубина	Лок. смещен	Глубина по стволу 1610	у, м Зенит, 0.00	град 7.66	Азимут, град 0.00							× –	. Скв. 1
0.00	0.00	0.00	0.00	0.00	(море), м	к северу	1620	00	6.31	0.0								
100.00	0.00	0.00	100.00	100.00	100.00	0	1640	1.00	2.61	0.0							1	
321.97	22.20	0.00	221.97	316.46	316.46	42	1650	1.00	2.26	0.0		4.62					++-	++
420.73	22.20	0.00	1098.77	1333.80	1333.80	457	1650	0.00	0.91	0.0						T		
542.70	10.00	0.00	121.97	1450.76	1450.76	491	1670	0.00	0.44	180.0	5					+	++	
592.70	10.00	0.00	50.00	1500.00	1500.00	500	1680).00	1.79	180.0	0						++	
000.00	45.00	180.00	407.30	1873.70	1873.70	382	1690	0.00	3.14	180.0	5						++	
300.00	90.00	160.00	300.00	1986.55	1986.55	119	1700	0.00	4.49	180.0		3.7					++	
500.00	88.00	150.00	200.00	1990.05	1990.05	-61	1710	0.00	5.84	180.00	וו						\rightarrow	
							1720	0.00	7.19	180.00	0							
							1730	0.00	8.54	180.0	D							
							1740	0.00	9.89	180.0	D	8						
							1750	0.00	11.24	180.00	D	o fi						
							1760	0.00	12.59	180.00	0	SH 2.77				-		++
							1770).00	13.94	180.00) <	×e				+	++1	
							1780).00	15.29	180.00	D	100					'	++
							1790	0.00	16.64	180.0	D	o d						++
							1800).00	17.99	180.0	D	KT0						
добавл	ения, встав	ки, удале	ния метод	ца проектирова	ния или редакти	ировании	1810	0.00	19.34	180.0	D	⊕ 185-						
биль	S-профиль	Простра	анственна	ая кривая 🛛 Пло	ская дуга на точ	ку Пло	1820	0.00	20.69	180.0	D	1.05						
							1830	0.00	22.04	180.0	D							
							1840	0.00	23.39	180.0								$\overline{\mathbf{\Pi}}$
							1850	0.00	24.74	180.0						+	+++-	
							ſ	Тараметры сбл	лижения									Ť
							Скважина Ствол	Расстояние	Расст. м эллипс	ежду Факт ами сбли	ор ж.	0.92						$\pm \pm$
							Скв. 1	266.17	2	41.77 1	0.91						++-	++
							Скв. 2	31.09		3.73	1.14					+	+	+
							Скв. 3	234.75	2	12.34 1	0.47				++	++	++	++

По умолчанию панель скрыта. Чтобы отобразить её необходимо нажать на кнопку «сплиттера» (по аналогии с настройками 3D).

39. В методах проектирования профиля состоящих из несколько элементов появилось возможность разбивать метод до определенной глубины по вертикали (все данные, глубина по вертикали которых больше введенной глубины будут удалены).

.	0.00	0.000	
Разбить метод - "S-профиль" Х	180.00	0.859	
	332.76	1.500	
○ разбить метод	258.63	-0.100	
о разбить метод и очистить всё с глубины 796.00 по стволу, м			
Интервал по стволу (м.): от 0 до 1593			
разбить метод и очистить всё с глубины по вертикали, м			
Интервал по вертикали (м.): от 0 до 1500]
Або Сохранить Отме	солютная иетка, м	.40	
		.:	

40. В шаблоне куста при расчете координат «объектов бурения» появилась возможность отображать по этим координатам центр масс.

🔳 Шаблон куста - КП1 v22.2											
📓 Расчёт плана разбуривания 🦳 Сохранить изменения 🔀 Отменить изменения 🕅 🕅 Отчёт 🔣 Отчет											
Сист Цили Напр	ема геодезич. па индрическая про равление азимута	Глоб. смеще Глоб. смеще Номер 6 гра	ние на север: ние на восток дусной зоны:								
Элементы шаблона куста Объекты бурения Горизонтальная проекция											
ø	🛃 Добавить 🔣 Удалить 🛛 Тип расчёта: Локальные полярные 🕞 📰 Добавить 📓 Расчёт координат										
			Геодезические	е координаты	Глобальные	смещения	локальные	смещения			
N₽	Название объекта	Пласт	Широта, °	Долгота, °	на север, м	на восток, м	на север, м	на восток, М			
1	Target6		69°22'29.401'' 🗸	76°3'27.815'' 🗸	7699731.51	541597.26	-1127.63	-410.42			
2	Target5		69°22'47.625'' 🗸	76°4'35.139'' 🗸	7700308.97	542322.71	-562.92	325.00			
З	Target3		69°23'9.157'' 🗸	76°5'54.862'' 🗸	7700991.56	543181.37	104.59	1195.43			
4	Target4		69°22'55.301'' 🗸	76°5'27.124'' 🗸	7700556.84	542886.18	-324.92	892.71			
5	Target1		69°23'24.056'' 🗸	76°4'5.383'' 🗸	7701432.04	541978.07	566.00	0.00			
6	Target2		69°23'23.017'' 🗸	76°4'54.284'' 🗸	7701409.23	542512.41	533.87	533.87			

Понятие "центр масс (тяжести) многоугольника" можно интерпретировать тремя различными способами:

- Масса находится только в вершинах, причем каждая вершина "весит" одинаково
- Масса равномерно распределена по границе многоугольника
- Масса равномерно распределена по области, ограниченной многоугольником (выпуклый).

Бурсофтпроект 2020-2023

41. В стандартном отчете по инклинометрии появилась возможность выводить используемые при расчете эллипса неопределенности приборы.

. CK-42 Gauss-Kruger	Номер 6 градусной зоны: Геомагнитная модель	13 IGRF
65°0'0.000"	Магнитное склонение, град	20
75°0'0.000"	Сближение меридианов, град	0
7211464.73	Магнитное наклонение (Inclination, DipAngle), град	80.53
500000	Общая напряженность магн. поля земли (Total Field), nT	59785.4
0	Суммарная поправка (MAG->GRID), град	20
0	Направление азимута	GRID
316.97	Индекс сложности бурения (DDI)	6.367
1550.68	Индекс удаленности забоя от вертикали (ERD ratio)	0.886

Абсолютная отметка, м	Лок. смещение к северу, м	Лок. смещение к востоку, м	Отклонение от устья, м	Азимут смещения (GRID), град	Пространст. интенсивность, град/10 м	Угол установки отклон., град	Интенсив. по зениту, град/10 м	Комментарий
0	0	0	0	0	0	0	0	
450.16	186.46	0	186.46	0	0.9	0	0.9	
709.41	444.94	285.48	528.65	32.68	1.518	90.11	0.7	
948.39	368.01	695.61	786.96	62.12	1.104	138.74	-0.7	
1391.8	206.13	822	847.45	75.92	0.848	166	-0.7	
1750	500	850	986.15	59.53	1.87	167.81	1.494	

Название инструмента	Начало применения иструмента	Тип инструмента
KNGF MWD	от устья	ISCWSA
KNGF MWD+AXIAL	1500	ISCWSA
MWD Rev4	2000	ISCWSA

Таблица с прибора создается на первой вкладке отчета, под таблицей с данными по инклинометрии.

Версия 22.4

42. В пользовательском отчете по инклинометрии появилась возможность выводить в таблицы с инклинометрией ([#TABLE_PROFIL#] и [#TABLE_PROFIL_INT#]) параметры расчета эллипса неопределенности и имя прибора применяемого для этого расчета.

🔳 Эллі	ипс неопр	еделенно	сти									
Тип модели - инструмент Ошибки (sigma)							Wollf/dWardt - Мой инструмент					
O Wollf/dWardt				Параметры 1			шибка в опред	00м: 1.00	Ошибка в опред. и			
				Инструмента		H	есоосность пр	ибора, град:	0.15	Ошибка в опре		
ISCW	SA KNGF I	MWD	• …	Ошибка в опред. зенита, град: 0.50						Ошибка в опр	оед. а	
Исходные данные Данные расчета												
MD	INC	AZI	TVD	Highside	Lateral	Vertical	SemiMajor	SemiMajor -v1	SemiMinor	Min. Azimut	Sen	
10.00	0.25	320.74	10.00	0.03	0.03	0.98	0.03	0.03	0.03	58.04		
20.00	0.10	320.74	20.00	0.00	0.00	0.50	0.00	0.00	0.00	00.57		
30.00	0.15	320.74	30.00	0.13	0.13	0.98	0.13	0.13	0.13	79.99		
40.00	0.20	320.74	40.00	0.18	0.18	0.98	0.18	0.18	0.18	80.42		

Для вывода параметров эллипса неопределенномти, необходимо добавить следующие метки: [#T_HSIDE]], [#T_LATERAL], [#T_VERTIKAL], [#T_SMAJV1], [#T_SMAJV2], [#T_SMIN], [#T_MINAZI] [#T_NAMETOOLS] - имя прибора

Угол установки отклон., град	Комментарий	HSIDE	LATERAL	VERTIKAL	SMAJV1	SMAJV2	SMIN	MINAZI
[#T_TFO]	[#T_COMM]	[#T_HSIDE]	[#T_LATERAL]	[#T_VERTIKAL]	[#T_SMAJV1]	[#T_SMAJV2]	[#T_SMIN]	[#T_MINAZI]

14	15	16	17	18	19	20	21	22	23
Азимут смещения, град	Угол установки отклон., град	Комментарий	HSIDE	LATERAL	VERTIKAL	SMAJV1	SMAJV2	SMIN	MINAZI
) 0	0		0	U	U	U	U	U	90
r 0	0		0.35	1.56	0.37	1.56	1.56	0.32	179.86
5 0	0		0.77	3.11	0.74	3.11	3.11	0.63	179.86
0	0		1.22	4.67	1.12	4.67	4.67	0.95	179.86
0	0		1.71	6.22	1.40	6.22	6.22	1.20	170.00

Версия 22.4

43. В анализе сближений на вкладке «Графические данные» в горизонтальной проекции появилась возможность формировать данные (устья, инклинометрия, цели) и отправлять в браузер по умолчанию на «Яндекс.Карты» (для ознакомления).

44. При расчете фактора сближения появилась возможность выбора расчета (Компас2000 или Компас5000) ошибки анализируемой скважины.

Тип расчета хранится в файле - Options.ini (расположен в рабочем каталоге ПО).

Если в этом файле запись «VERSCOMPAS» отсутствует или равна значению 2000, то расчет ведется как в Компас2000. Если равна 5000, то расчет ведется как в Компас5000. Изменить это параметр можно как в файле, так и на форме выбора скважин для анализа сближений.

	Предварительный анализ начальный диапазон, м 60
	расширение, на 1000 м 100 🗌
	🗌 Добавить направление к расстоянию
	🗹 Палитра по умолч. 🗌 3D-пропорц. оси
	Скважина/Ствол 🗹 / 🗌
	Толщина линии по умолчанию 2 主
	Показать метки с шагом по стволу, м 200 🚔
	Фактор сближ Риск/Отобр. 1.5 荣 5 荣
	Макс. расстояние для отображ., м 🛛 250 🚔
J	Отобразить допуск (коридор), м 10 丈 Тип дополнительной плоскости Перпендикулярная Огоризонтальная
🗹 pa	счёт Сомр5000 Выбрать Закрыть

Различие в расчетах можно увидеть в 3D по проекции эллипсоида анализ. ствола

45. В анализ пересечений добавлены следующие приборы, описанные по модели ISCWSA:

- MWD+IGRF (B006Ma)
- MWD+IGRF+AX (B007Ma)
- MWD+IGRF+AX+SAG (B008Ma)
- MWD+IGRF+SAG (B009Ma)
- MWD Magnetic (Thorogood)
- SLB_IGN-73

Новые приборы, а также остальные приборы описанные по модели ISCWSA можно добавить на форме «Эллипс неопределенности», нажав кнопку «Добавить приборы из списка в справочник».

Тип мод	ели - инструмент	Ошибк
	/dWardt Poor magnetizati	Параме инструм
● ISCW	SA MWD Rev4	Поверх эллипсо
	PTW MWD+SAG	^
	PTW MWD+AXIAL No PTW MWD+AXIAL+SAG	асч
	KNGF MWD	
MD	KNGF MWD+BGGM	
3941,98	PoorMag ISCWSA Standard	
3956,89	PoorMag ISCWSA Edit	
3966,51	GYRO-GMS-ISGYRO-DP	
3978.77	INC-ONIX (A027Ua)	
3991.02	INC-ONLY_PLANNED_5_DEG (A02	8Ua)
4000.00	UNKNOWN (A029Ua)	-
4006,89	BLIND+TREND (B022Ua)	
4015,54	GVRO-NS-GC Wireline (H049Ga)	
4027,83	GYRO-NS (A020Ga)	
4040,09	GYRO-NS (A020Gb)	
4052.36	GYRO UNKNOWN (H052Ga)	
4054.50	IBIS-MWD	
4004,63	MWD+IGRE+AX (B007Ma)	
4080,00	MWD+IGRF+AX+SAG (B008Ma)	
	MWD+IGRF+SAG (B009Ma)	
<	MWD Magnetic (Thorogood)	

В справочник были добавлены следующи ISCWSA: PTW MWD+SAG PTW MWD+AXIAL PTW MWD+AXIAL FWMWD+AXIAL+SAG KNGF MWD AXIAL+SAG KNGF MWD+BGGM KNGF MWD+AXIAL BLIND (A026Ua) INC-ONLY_PLANNED_5_DEG (A028Ua) UNKNOWN (A029Ua) BLIND+TREND (B022Ua) BH UNKNOWN TOOL GYRO-NS (A020Ga) GYRO-NS (A020Ga) GYRO-NS (A020Gb) GYRO UNKNOWN (H052Ga) BTS-MWD MWD+IGRF (B006Ma) MWD+IGRF (AX (B007Ma) MWD+IGRF+AX (B007Ma) MWD+IGRF+AX (B009Ma) MWD+IGRF+SAG (B009Ma) MWD HGRF+SAG (B009Ma)	е приборы
	ОК

46. В анализе сближений (отклонений) добавилось отображение эллипсоида неопределенности.

Для этого необходимо провести анализ, на вкладке «Графические данные» выбрать «3D» и в настройках поставить соответствующую галочку.

